comet/crates/comet_renderer/src/renderer2d.rs

950 lines
No EOL
32 KiB
Rust

use std::iter;
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Instant;
use wgpu::BufferUsages;
use wgpu::core::command::DrawKind::Draw;
use wgpu::naga::ShaderStage;
use wgpu::util::DeviceExt;
use winit::dpi::PhysicalSize;
use winit::window::Window;
use comet_colors::Color;
use comet_ecs::{Camera2D, Component, Position2D, Render, Render2D, Transform2D, Scene, Text};
use comet_log::*;
use comet_math::{p2, p3, v2, v3};
use comet_resources::{graphic_resource_manager::GraphicResourceManager, Texture, Vertex};
use comet_resources::texture_atlas::TextureRegion;
use comet_structs::ComponentSet;
use crate::camera::{RenderCamera, CameraUniform};
use crate::draw_info::DrawInfo;
use crate::render_pass::{RenderPassInfo, RenderPassType};
use crate::renderer::Renderer;
pub struct Renderer2D<'a> {
surface: wgpu::Surface<'a>,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
size: PhysicalSize<u32>,
render_pipeline_layout: wgpu::PipelineLayout,
universal_render_pipeline: wgpu::RenderPipeline,
texture_bind_group_layout: wgpu::BindGroupLayout,
dummy_texture_bind_group: wgpu::BindGroup,
texture_sampler: wgpu::Sampler,
camera: RenderCamera,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
render_pass: Vec<RenderPassInfo>,
draw_info: Vec<DrawInfo>,
graphic_resource_manager: GraphicResourceManager,
delta_time: f32,
last_frame_time: Instant,
clear_color: wgpu::Color,
}
impl<'a> Renderer2D<'a> {
pub fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Renderer2D<'a> {
let size = PhysicalSize::<u32>::new(1920, 1080);
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::PRIMARY,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
let adapter = pollster::block_on(instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
}))
.unwrap();
let (device, queue) = pollster::block_on(adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
memory_hints: Default::default(),
},
None, // Trace path
))
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()),
});
let graphic_resource_manager = GraphicResourceManager::new();
let diffuse_bytes = include_bytes!(r"../../../resources/textures/comet_icon.png");
let diffuse_texture =
Texture::from_bytes(&device, &queue, diffuse_bytes, "comet_icon.png", false).unwrap();
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let camera = RenderCamera::new(1.0, v2::new(2.0, 2.0), v3::new(0.0, 0.0, 0.0));
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("camera_bind_group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&camera_bind_group_layout,
],
push_constant_ranges: &[],
});
let universal_render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let mut render_pass: Vec<RenderPassInfo> = Vec::new();
/*render_pass.push(RenderPassInfo::new_engine_pass(
&device,
"Standard Render Pass".to_string(),
&texture_bind_group_layout,
&diffuse_texture,
vec![],
vec![],
));*/
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
}
};
let texture_sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
lod_min_clamp: 0.0,
lod_max_clamp: 100.0,
compare: None,
anisotropy_clamp: 16,
border_color: None,
..Default::default()
});
let empty_texture = device.create_texture(&wgpu::TextureDescriptor {
label: Some("Empty Texture"),
size: wgpu::Extent3d {
width: config.width,
height: config.height,
depth_or_array_layers: 1,
},
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Bgra8UnormSrgb,
usage: wgpu::TextureUsages::COPY_SRC | wgpu::TextureUsages::COPY_DST | wgpu::TextureUsages::TEXTURE_BINDING,
view_formats: &[wgpu::TextureFormat::Bgra8UnormSrgb],
});
let dummy_texture_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&empty_texture.create_view(&wgpu::TextureViewDescriptor::default())),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&texture_sampler),
},
],
label: Some("dummy_texture_bind_group"),
});
let mut draw_info: Vec<DrawInfo> = Vec::new();
Self {
surface,
device,
queue,
config,
size,
render_pipeline_layout,
universal_render_pipeline,
texture_bind_group_layout,
dummy_texture_bind_group,
texture_sampler,
camera,
camera_uniform,
camera_buffer,
camera_bind_group,
render_pass,
draw_info,
graphic_resource_manager,
delta_time: 0.0,
last_frame_time: Instant::now(),
clear_color,
}
}
pub fn dt(&self) -> f32 {
self.delta_time
}
pub fn config(&self) -> &wgpu::SurfaceConfiguration {
&self.config
}
pub fn size(&self) -> PhysicalSize<u32> {
self.size
}
pub fn resize(&mut self, new_size: PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
//self.projection.resize(new_size.width, new_size.height);
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn add_render_pass(&mut self, name: String, texture: Texture, shader: String) {
let render_pass = RenderPassInfo::new_user_pass(
&self.device,
name,
&self.texture_bind_group_layout,
&texture,
self.graphic_resource_manager.get_shader(shader.as_str()).unwrap(),
vec![],
vec![],
&self.render_pipeline_layout,
&self.config
);
self.render_pass.push(render_pass);
}
pub fn add_draw_call(&mut self, draw_call: String, texture: Texture) {
let draw_info = DrawInfo::new(
draw_call,
&self.device,
&texture,
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(draw_info);
}
/// A function that loads a shader from the resources/shaders folder given the full name of the shader file.
pub fn load_shader(&mut self, file_name: &str, shader_stage: Option<ShaderStage>) {
self.graphic_resource_manager.load_shader(shader_stage, ((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + file_name.clone()).as_str(), &self.device).unwrap();
info!("Shader ({}) loaded successfully", file_name);
}
pub fn load_shaders(&mut self, shader_stages: Vec<Option<ShaderStage>>, file_names: Vec<&str>) {
for (i, file_name) in file_names.iter().enumerate() {
self.load_shader(file_name, shader_stages[i].clone());
info!("Shader ({}) loaded successfully", file_name);
}
}
/// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded.
pub fn apply_shader(&mut self, shader: &str) {
let module = match self.graphic_resource_manager.get_shader(shader) {
Some(module) => module,
None => {
error!("Shader not found");
return;
}
};
self.render_pass[0].set_shader(&self.device, &self.config, &self.render_pipeline_layout, module);
}
/// A function to revert back to the base shader of the `Renderer2D`
pub fn apply_base_shader(&mut self) {
todo!()
}
pub fn load_font(&mut self, path: &str, size: f32) {
self.graphic_resource_manager.load_font(path, size);
let atlas = self.graphic_resource_manager.fonts().iter().find(|f| f.name() == path).unwrap().glyphs().atlas();
let font_info = DrawInfo::new(
format!("{}", path),
&self.device,
&Texture::from_image(&self.device, &self.queue, atlas, None, false).unwrap(),
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(font_info);
}
/// An interface for getting the location of the texture in the texture atlas.
pub fn get_texture_region(&self, texture_path: String) -> Option<&TextureRegion> {
if !self.graphic_resource_manager.texture_atlas().textures().contains_key(&texture_path) {
error!("Texture {} not found in atlas", &texture_path);
}
self.graphic_resource_manager.texture_atlas().textures().get(&texture_path)
}
pub fn get_glyph_region(&self, glyph: char, font: String) -> &TextureRegion {
let font_atlas = self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap();
font_atlas.get_glyph(glyph).unwrap()
}
/// A function that allows you to set the texture atlas with a list of paths to the textures.
/// The old texture atlas will be replaced with the new one.
pub fn set_texture_atlas_by_paths(&mut self, paths: Vec<String>) {
self.graphic_resource_manager.create_texture_atlas(paths);
let universal_draw = DrawInfo::new(
"Universal Draw".to_string(),
&self.device,
&Texture::from_image(&self.device, &self.queue, self.graphic_resource_manager.texture_atlas().atlas(), None, false).unwrap(),
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(universal_draw);
//self.render_pass[0].set_texture(&self.device, &self.texture_bind_group_layout, &Texture::from_image(&self.device, &self.queue, self.graphic_resource_manager.texture_atlas().atlas(), None, false).unwrap());
}
fn set_texture_atlas(&mut self, texture_atlas: Texture) {
self.draw_info[0].set_texture(
&self.device,
&self.texture_bind_group_layout,
&texture_atlas,
);
/*self.render_pass[0].set_texture(
&self.device,
&self.texture_bind_group_layout,
&Texture::from_image(
&self.device,
&self.queue,
&texture_atlas.to_image(&self.device, &self.queue).unwrap(),
None,
false
).unwrap()
);*/
}
fn get_project_root() -> std::io::Result<PathBuf> {
let path = std::env::current_dir()?;
let mut path_ancestors = path.as_path().ancestors();
while let Some(p) = path_ancestors.next() {
let has_cargo =
std::fs::read_dir(p)?
.into_iter()
.any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock"));
if has_cargo {
return Ok(PathBuf::from(p))
}
}
Err(std::io::Error::new(std::io::ErrorKind::NotFound, "Ran out of places to find Cargo.toml"))
}
/// A function that takes all the textures inside the resources/textures folder and creates a texture atlas from them.
pub fn initialize_atlas(&mut self) {
let texture_path = "resources/textures/".to_string();
let mut paths: Vec<String> = Vec::new();
for path in std::fs::read_dir(Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "/resources/textures").unwrap() {
paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap());
}
self.set_texture_atlas_by_paths(paths);
}
/// A function that writes on the buffers and sets the geometry and index buffer of the `Renderer2D` with the given data.
fn set_buffers(&mut self, new_geometry_buffer: Vec<Vertex>, new_index_buffer: Vec<u16>) {
self.draw_info[0].update_vertex_buffer(&self.device, &self.queue, new_geometry_buffer);
self.draw_info[0].update_index_buffer(&self.device, &self.queue, new_index_buffer);
//self.render_pass[0].set_vertex_buffer(&self.device, &self.queue, new_geometry_buffer);
//self.render_pass[0].set_index_buffer(&self.device, &self.queue, new_index_buffer);
}
/// A function that adds data to the already existing geometry and index buffers of the `Renderer2D`.
fn push_to_buffers(&mut self, new_geometry_data: &mut Vec<Vertex>, new_index_buffer: &mut Vec<u16>) {
self.render_pass[0].push_to_vertex_buffer(&self.device, new_geometry_data);
self.render_pass[0].push_to_index_buffer(&self.device, new_index_buffer);
}
/// A function that clears the geometry and index buffers of the `Renderer2D`.
fn clear_buffers(&mut self) {
todo!()
}
/// A function to just draw a textured quad at a given position.
pub fn draw_texture_at(&mut self, texture_path: String, position: p3) {
let region = self.graphic_resource_manager.texture_locations().get(&texture_path).unwrap();
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32/ self.config.width as f32) * 0.5, (dim_y as f32/ self.config.height as f32) * 0.5);
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.u0(), region.v0()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.u0(), region.v1()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.u1(), region.v1()], [0.0, 0.0, 0.0, 0.0] ) ,
Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.u1(), region.v0()], [0.0, 0.0, 0.0, 0.0] )
];
let buffer_size = self.render_pass[0].vertex_data().len() as u16;
let indices: &mut Vec<u16> = &mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
];
self.push_to_buffers(vertices, indices)
}
/// A function to draw text at a given position.
pub fn draw_text_at(&mut self, text: &str, font: String, size: f32, position: p2, color: impl Color) {
//self.set_font_atlas(font.clone());
let wgpu_color = color.to_wgpu();
let vert_color = [wgpu_color.r as f32, wgpu_color.g as f32, wgpu_color.b as f32, wgpu_color.a as f32];
let screen_position = p2::new(position.x()/self.config.width as f32, position.y()/self.config.height as f32);
let scale_factor = size / self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().size();
let line_height = (self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().line_height() / self.config.height as f32) * scale_factor;
let lines = text.split("\n").collect::<Vec<&str>>();
let mut x_offset = 0.0;
let mut y_offset = 0.0;
for line in lines {
for c in line.chars() {
let region = self.get_glyph_region(c, font.clone());
let (dim_x, dim_y) = region.dimensions();
let w = (dim_x as f32 / self.config.width as f32) * scale_factor;
let h = (dim_y as f32 / self.config.height as f32) * scale_factor;
let offset_x_px = (region.offset_x() / self.config.width as f32) * scale_factor;
let offset_y_px = (region.offset_y() / self.config.height as f32) * scale_factor;
let glyph_left = screen_position.x() + x_offset + offset_x_px;
let glyph_top = screen_position.y() - offset_y_px - y_offset;
let glyph_right = glyph_left + w;
let glyph_bottom = glyph_top - h;
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex::new([ glyph_left, glyph_top, 0.0 ], [region.u0(), region.v0()], vert_color),
Vertex::new([ glyph_left, glyph_bottom, 0.0 ], [region.u0(), region.v1()], vert_color),
Vertex::new([ glyph_right, glyph_bottom, 0.0 ], [region.u1(), region.v1()], vert_color),
Vertex::new([ glyph_right, glyph_top, 0.0 ], [region.u1(), region.v0()], vert_color),
];
let buffer_size = self.render_pass[1].vertex_data().len() as u16;
let indices: &mut Vec<u16> = &mut vec![
buffer_size, buffer_size + 1, buffer_size + 3,
buffer_size + 1, buffer_size + 2, buffer_size + 3,
];
x_offset += (region.advance() / self.config.width as f32) * scale_factor;
self.push_to_buffers(vertices, indices);
}
y_offset += line_height;
x_offset = 0.0;
}
}
fn add_text_to_buffers(&self, draw_index: usize, text: String, font: String, size: f32, position: p2, color: wgpu::Color) -> (Vec<Vertex>, Vec<u16>) {
let vert_color = [color.r as f32, color.g as f32, color.b as f32, color.a as f32];
let screen_position = p2::new(position.x()/self.config.width as f32, position.y()/self.config.height as f32);
let scale_factor = size / self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().size();
let line_height = (self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().line_height() / self.config.height as f32) * scale_factor;
let lines = text.split("\n").collect::<Vec<&str>>();
let mut x_offset = 0.0;
let mut y_offset = 0.0;
let mut vertex_data = Vec::new();
let mut index_data = Vec::new();
for line in lines {
for c in line.chars() {
let region = self.get_glyph_region(c, font.clone());
let (dim_x, dim_y) = region.dimensions();
let w = (dim_x as f32 / self.config.width as f32) * scale_factor;
let h = (dim_y as f32 / self.config.height as f32) * scale_factor;
let offset_x_px = (region.offset_x() / self.config.width as f32) * scale_factor;
let offset_y_px = (region.offset_y() / self.config.height as f32) * scale_factor;
let glyph_left = screen_position.x() + x_offset + offset_x_px;
let glyph_top = screen_position.y() - offset_y_px - y_offset;
let glyph_right = glyph_left + w;
let glyph_bottom = glyph_top - h;
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex::new([ glyph_left, glyph_top, 0.0 ], [region.u0(), region.v0()], vert_color),
Vertex::new([ glyph_left, glyph_bottom, 0.0 ], [region.u0(), region.v1()], vert_color),
Vertex::new([ glyph_right, glyph_bottom, 0.0 ], [region.u1(), region.v1()], vert_color),
Vertex::new([ glyph_right, glyph_top, 0.0 ], [region.u1(), region.v0()], vert_color),
];
let buffer_size = vertex_data.len() as u16;
let indices: &mut Vec<u16> = &mut vec![
buffer_size, buffer_size + 1, buffer_size + 3,
buffer_size + 1, buffer_size + 2, buffer_size + 3,
];
x_offset += (region.advance() / self.config.width as f32) * scale_factor;
vertex_data.append(vertices);
index_data.append(indices);
}
y_offset += line_height;
x_offset = 0.0;
}
(vertex_data, index_data)
}
fn find_priority_camera(&self, cameras: Vec<Camera2D>) -> usize {
let mut priority = 0;
let mut position = 0;
for (i, camera) in cameras.iter().enumerate() {
if camera.priority() < priority {
priority = camera.priority();
position = i;
}
}
position
}
fn setup_camera<'b>(&mut self, cameras: Vec<usize>, scene: &'b Scene) -> (&'b Position2D, &'b Camera2D){
let cam = cameras.get(
self.find_priority_camera(
cameras.iter().map(|e| *scene.get_component::<Camera2D>(*e).unwrap()
).collect::<Vec<Camera2D>>())
).unwrap();
let camera_component = scene.get_component::<Camera2D>(*cam).unwrap();
let camera_position = scene.get_component::<Transform2D>(*cam).unwrap().position();
let camera = RenderCamera::new(
camera_component.zoom(),
camera_component.dimensions(),
v3::new(camera_position.as_vec().x(),
camera_position.as_vec().y(),
0.0));
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("camera_bind_group"),
});
self.camera = camera;
self.camera_buffer = camera_buffer;
self.camera_uniform = camera_uniform;
self.camera_bind_group = camera_bind_group;
(camera_position, camera_component)
}
/// A function to automatically render all the entities of the `Scene` struct.
/// The entities must have the `Render2D` and `Transform2D` components to be rendered as well as set visible.
pub fn render_scene_2d(&mut self, scene: &Scene) {
let cameras = scene.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Camera2D::type_id()]));
if cameras.is_empty() {
return;
}
let entities = scene.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Render2D::type_id()]));
let texts = scene.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), comet_ecs::Text::type_id()]));
self.setup_camera(cameras, scene);
let mut vertex_buffer: Vec<Vertex> = Vec::new();
let mut index_buffer: Vec<u16> = Vec::new();
for entity in entities {
let renderer_component = scene.get_component::<Render2D>(entity).unwrap();
let transform_component = scene.get_component::<Transform2D>(entity).unwrap();
if renderer_component.is_visible() {
let mut position = transform_component.position().clone();
position.set_x(position.x() / self.config().width as f32);
position.set_y(position.y() / self.config().height as f32);
let mut t_region: Option<&TextureRegion> = None;
match self.get_texture_region(renderer_component.get_texture().to_string()) {
Some(texture_region) => {
t_region = Some(texture_region);
},
None => continue,
}
let region = t_region.unwrap();
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32/ self.config().width as f32) * 0.5, (dim_y as f32/ self.config().height as f32) * 0.5);
let buffer_size = vertex_buffer.len() as u16;
vertex_buffer.append(&mut vec![
Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0], [region.u0(), region.v0()], [1.0, 1.0, 1.0, 1.0] ),
Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u0(), region.v1()], [1.0, 1.0, 1.0, 1.0] ),
Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u1(), region.v1()], [1.0, 1.0, 1.0, 1.0] ) ,
Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0], [region.u1(), region.v0()], [1.0, 1.0, 1.0, 1.0] )
]);
index_buffer.append(&mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
]);
}
}
for text in texts {
let component = scene.get_component::<Text>(text).unwrap();
let transform = scene.get_component::<Transform2D>(text).unwrap();
if component.is_visible() {
let draw_index = self.draw_info.iter().enumerate().find(|(_, d)| d.name() == &format!("{}", component.font())).unwrap().0;
let (vertices, indices) = self.add_text_to_buffers(draw_index, component.content().to_string(), component.font().to_string(), component.font_size(), p2::from_vec(transform.position().as_vec()), component.color().to_wgpu());
let draw = self.draw_info.iter_mut().find(|d| d.name() == &format!("{}", component.font())).unwrap();
draw.update_vertex_buffer(&self.device, &self.queue, vertices);
draw.update_index_buffer(&self.device, &self.queue, indices);
}
}
self.set_buffers(vertex_buffer, index_buffer);
}
fn sort_entities_by_position(&self, entity_data: Vec<(usize, Position2D)>) -> Vec<usize> {
let mut sorted_entities: Vec<usize> = vec![];
let mut entity_data = entity_data.clone();
entity_data.sort_by(|a, b| a.1.x().partial_cmp(&b.1.x()).unwrap());
for (i, _) in entity_data {
sorted_entities.push(i);
}
sorted_entities
}
/// A function to render the screen from top to bottom.
/// Generally useful in top-down games to render trees in front of players for example.
pub fn render_layered_scene_2d(&mut self, world: &Scene) {
let cameras = world.get_entities_with(ComponentSet::from_ids(vec![Camera2D::type_id()]));
if cameras == vec![] {
return;
}
let (camera_position, camera_component) = self.setup_camera(cameras, world);
let mut visible_entities: Vec<usize> = vec![];
for entity in world.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Render2D::type_id()])) {
let entity_id = entity as usize;
if !camera_component
.in_view_frustum(*camera_position, *world.get_component::<Transform2D>(entity_id).unwrap().position())
{
continue;
}
match world.get_component::<Render2D>(entity_id) {
Some(render) => {
if !render.is_visible() {
continue;
}
if let Some(cam) = world.get_component::<Camera2D>(entity_id) {
continue;
}
visible_entities.push(entity_id);
}
None => {
continue;
}
}
}
let entity_data = {
let mut data: Vec<(usize, Position2D)> = vec![];
for entity in visible_entities {
data.push((entity, *world.get_component::<Transform2D>(entity).unwrap().position()));
}
data
};
let visible_entities = self.sort_entities_by_position(entity_data);
let mut vertex_buffer: Vec<Vertex> = Vec::new();
let mut index_buffer: Vec<u16> = Vec::new();
for entity in visible_entities {
let renderer_component = world.get_component::<Render2D>(entity);
let transform_component = world.get_component::<Transform2D>(entity);
if renderer_component.unwrap().is_visible() {
let mut position = transform_component.unwrap().position().clone();
position.set_x(position.x() / self.config().width as f32);
position.set_y(position.y() / self.config().height as f32);
let region = self.get_texture_region(renderer_component.unwrap().get_texture().to_string()).unwrap();
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32 / self.config().width as f32) * 0.5, (dim_y as f32 / self.config().height as f32) * 0.5);
let buffer_size = vertex_buffer.len() as u16;
vertex_buffer.append(&mut vec![
Vertex::new([-bound_x + position.x(), bound_y + position.y(), 0.0], [region.u0(), region.v0()], [0.0, 0.0, 0.0, 0.0]),
Vertex::new([-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u0(), region.v1()], [0.0, 0.0, 0.0, 0.0]),
Vertex::new([bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u1(), region.v1()], [0.0, 0.0, 0.0, 0.0]),
Vertex::new([bound_x + position.x(), bound_y + position.y(), 0.0], [region.u1(), region.v0()], [0.0, 0.0, 0.0, 0.0])
]);
index_buffer.append(&mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
]);
}
}
self.set_buffers(vertex_buffer, index_buffer);
}
pub fn update(&mut self) -> f32 {
let now = Instant::now();
self.delta_time = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds
self.last_frame_time = now;
self.delta_time
}
pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let output_view = output.texture.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &output_view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(self.clear_color),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
for i in 0..self.draw_info.len() {
render_pass.set_pipeline(&self.universal_render_pipeline);
render_pass.set_bind_group(0, self.draw_info[i].texture(), &[]);
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.draw_info[i].vertex_buffer().slice(..));
render_pass.set_index_buffer(self.draw_info[i].index_buffer().slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.draw_info[i].num_indices(), 0, 0..1);
}
}
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
}
impl<'a> Renderer for Renderer2D<'a> {
fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Renderer2D<'a> {
Self::new(window, clear_color)
}
fn size(&self) -> PhysicalSize<u32> {
self.size()
}
fn resize(&mut self, new_size: PhysicalSize<u32>) {
self.resize(new_size)
}
fn update(&mut self) -> f32 {
self.update()
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
self.render()
}
}