use std::iter; use std::path::PathBuf; use std::sync::Arc; use std::time::Instant; use wgpu::BufferUsages; use wgpu::core::command::DrawKind::Draw; use wgpu::naga::ShaderStage; use wgpu::util::DeviceExt; use winit::dpi::PhysicalSize; use winit::window::Window; use comet_colors::Color; use comet_ecs::{Camera2D, Component, Position2D, Render, Render2D, Transform2D, Scene, Text}; use comet_log::*; use comet_math::{p2, p3, v2, v3}; use comet_resources::{graphic_resource_manager::GraphicResourceManager, Texture, Vertex}; use comet_resources::texture_atlas::TextureRegion; use comet_structs::ComponentSet; use crate::camera::{RenderCamera, CameraUniform}; use crate::draw_info::DrawInfo; use crate::render_pass::{RenderPassInfo, RenderPassType}; use crate::renderer::Renderer; pub struct Renderer2D<'a> { surface: wgpu::Surface<'a>, device: wgpu::Device, queue: wgpu::Queue, config: wgpu::SurfaceConfiguration, size: PhysicalSize, render_pipeline_layout: wgpu::PipelineLayout, universal_render_pipeline: wgpu::RenderPipeline, texture_bind_group_layout: wgpu::BindGroupLayout, dummy_texture_bind_group: wgpu::BindGroup, texture_sampler: wgpu::Sampler, camera: RenderCamera, camera_uniform: CameraUniform, camera_buffer: wgpu::Buffer, camera_bind_group: wgpu::BindGroup, render_pass: Vec, draw_info: Vec, graphic_resource_manager: GraphicResourceManager, delta_time: f32, last_frame_time: Instant, clear_color: wgpu::Color, } impl<'a> Renderer2D<'a> { pub fn new(window: Arc, clear_color: Option) -> Renderer2D<'a> { let size = PhysicalSize::::new(1920, 1080); let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends: wgpu::Backends::PRIMARY, ..Default::default() }); let surface = instance.create_surface(window).unwrap(); let adapter = pollster::block_on(instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, })) .unwrap(); let (device, queue) = pollster::block_on(adapter .request_device( &wgpu::DeviceDescriptor { label: None, required_features: wgpu::Features::empty(), required_limits: wgpu::Limits::default(), memory_hints: Default::default(), }, None, // Trace path )) .unwrap(); let surface_caps = surface.get_capabilities(&adapter); let surface_format = surface_caps .formats .iter() .copied() .find(|f| f.is_srgb()) .unwrap_or(surface_caps.formats[0]); let config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], desired_maximum_frame_latency: 2, }; let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()), }); let graphic_resource_manager = GraphicResourceManager::new(); let diffuse_bytes = include_bytes!(r"../../../resources/textures/comet_icon.png"); let diffuse_texture = Texture::from_bytes(&device, &queue, diffuse_bytes, "comet_icon.png", false).unwrap(); let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let camera = RenderCamera::new(1.0, v2::new(2.0, 2.0), v3::new(0.0, 0.0, 0.0)); let mut camera_uniform = CameraUniform::new(); camera_uniform.update_view_proj(&camera); let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera Buffer"), contents: bytemuck::cast_slice(&[camera_uniform]), usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: camera_buffer.as_entire_binding(), }], label: Some("camera_bind_group"), }); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[ &texture_bind_group_layout, &camera_bind_group_layout, ], push_constant_ranges: &[], }); let universal_render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_main", buffers: &[Vertex::desc()], compilation_options: Default::default(), }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::SrcAlpha, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, alpha: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::One, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, }), write_mask: wgpu::ColorWrites::ALL, })], compilation_options: Default::default(), }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), polygon_mode: wgpu::PolygonMode::Fill, unclipped_depth: false, conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, cache: None, }); let mut render_pass: Vec = Vec::new(); /*render_pass.push(RenderPassInfo::new_engine_pass( &device, "Standard Render Pass".to_string(), &texture_bind_group_layout, &diffuse_texture, vec![], vec![], ));*/ let clear_color = match clear_color { Some(color) => color.to_wgpu(), None => wgpu::Color { r: 0.0, g: 0.0, b: 0.0, a: 1.0, } }; let texture_sampler = device.create_sampler(&wgpu::SamplerDescriptor { address_mode_u: wgpu::AddressMode::ClampToEdge, address_mode_v: wgpu::AddressMode::ClampToEdge, address_mode_w: wgpu::AddressMode::ClampToEdge, mag_filter: wgpu::FilterMode::Linear, min_filter: wgpu::FilterMode::Linear, mipmap_filter: wgpu::FilterMode::Linear, lod_min_clamp: 0.0, lod_max_clamp: 100.0, compare: None, anisotropy_clamp: 16, border_color: None, ..Default::default() }); let empty_texture = device.create_texture(&wgpu::TextureDescriptor { label: Some("Empty Texture"), size: wgpu::Extent3d { width: config.width, height: config.height, depth_or_array_layers: 1, }, mip_level_count: 1, sample_count: 1, dimension: wgpu::TextureDimension::D2, format: wgpu::TextureFormat::Bgra8UnormSrgb, usage: wgpu::TextureUsages::COPY_SRC | wgpu::TextureUsages::COPY_DST | wgpu::TextureUsages::TEXTURE_BINDING, view_formats: &[wgpu::TextureFormat::Bgra8UnormSrgb], }); let dummy_texture_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&empty_texture.create_view(&wgpu::TextureViewDescriptor::default())), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&texture_sampler), }, ], label: Some("dummy_texture_bind_group"), }); let mut draw_info: Vec = Vec::new(); Self { surface, device, queue, config, size, render_pipeline_layout, universal_render_pipeline, texture_bind_group_layout, dummy_texture_bind_group, texture_sampler, camera, camera_uniform, camera_buffer, camera_bind_group, render_pass, draw_info, graphic_resource_manager, delta_time: 0.0, last_frame_time: Instant::now(), clear_color, } } pub fn dt(&self) -> f32 { self.delta_time } pub fn config(&self) -> &wgpu::SurfaceConfiguration { &self.config } pub fn size(&self) -> PhysicalSize { self.size } pub fn resize(&mut self, new_size: PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { //self.projection.resize(new_size.width, new_size.height); self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); } } pub fn add_render_pass(&mut self, name: String, texture: Texture, shader: String) { let render_pass = RenderPassInfo::new_user_pass( &self.device, name, &self.texture_bind_group_layout, &texture, self.graphic_resource_manager.get_shader(shader.as_str()).unwrap(), vec![], vec![], &self.render_pipeline_layout, &self.config ); self.render_pass.push(render_pass); } pub fn add_draw_call(&mut self, draw_call: String, texture: Texture) { let draw_info = DrawInfo::new( draw_call, &self.device, &texture, &self.texture_bind_group_layout, &self.texture_sampler, vec![], vec![], ); self.draw_info.push(draw_info); } /// A function that loads a shader from the resources/shaders folder given the full name of the shader file. pub fn load_shader(&mut self, file_name: &str, shader_stage: Option) { self.graphic_resource_manager.load_shader(shader_stage, ((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + file_name.clone()).as_str(), &self.device).unwrap(); info!("Shader ({}) loaded successfully", file_name); } pub fn load_shaders(&mut self, shader_stages: Vec>, file_names: Vec<&str>) { for (i, file_name) in file_names.iter().enumerate() { self.load_shader(file_name, shader_stages[i].clone()); info!("Shader ({}) loaded successfully", file_name); } } /// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded. pub fn apply_shader(&mut self, shader: &str) { let module = match self.graphic_resource_manager.get_shader(shader) { Some(module) => module, None => { error!("Shader not found"); return; } }; self.render_pass[0].set_shader(&self.device, &self.config, &self.render_pipeline_layout, module); } /// A function to revert back to the base shader of the `Renderer2D` pub fn apply_base_shader(&mut self) { todo!() } pub fn load_font(&mut self, path: &str, size: f32) { self.graphic_resource_manager.load_font(path, size); let atlas = self.graphic_resource_manager.fonts().iter().find(|f| f.name() == path).unwrap().glyphs().atlas(); let font_info = DrawInfo::new( format!("{}", path), &self.device, &Texture::from_image(&self.device, &self.queue, atlas, None, false).unwrap(), &self.texture_bind_group_layout, &self.texture_sampler, vec![], vec![], ); self.draw_info.push(font_info); } /// An interface for getting the location of the texture in the texture atlas. pub fn get_texture_region(&self, texture_path: String) -> Option<&TextureRegion> { if !self.graphic_resource_manager.texture_atlas().textures().contains_key(&texture_path) { error!("Texture {} not found in atlas", &texture_path); } self.graphic_resource_manager.texture_atlas().textures().get(&texture_path) } pub fn get_glyph_region(&self, glyph: char, font: String) -> &TextureRegion { let font_atlas = self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap(); font_atlas.get_glyph(glyph).unwrap() } /// A function that allows you to set the texture atlas with a list of paths to the textures. /// The old texture atlas will be replaced with the new one. pub fn set_texture_atlas_by_paths(&mut self, paths: Vec) { self.graphic_resource_manager.create_texture_atlas(paths); let universal_draw = DrawInfo::new( "Universal Draw".to_string(), &self.device, &Texture::from_image(&self.device, &self.queue, self.graphic_resource_manager.texture_atlas().atlas(), None, false).unwrap(), &self.texture_bind_group_layout, &self.texture_sampler, vec![], vec![], ); self.draw_info.push(universal_draw); //self.render_pass[0].set_texture(&self.device, &self.texture_bind_group_layout, &Texture::from_image(&self.device, &self.queue, self.graphic_resource_manager.texture_atlas().atlas(), None, false).unwrap()); } fn set_texture_atlas(&mut self, texture_atlas: Texture) { self.draw_info[0].set_texture( &self.device, &self.texture_bind_group_layout, &texture_atlas, ); /*self.render_pass[0].set_texture( &self.device, &self.texture_bind_group_layout, &Texture::from_image( &self.device, &self.queue, &texture_atlas.to_image(&self.device, &self.queue).unwrap(), None, false ).unwrap() );*/ } fn get_project_root() -> std::io::Result { let path = std::env::current_dir()?; let mut path_ancestors = path.as_path().ancestors(); while let Some(p) = path_ancestors.next() { let has_cargo = std::fs::read_dir(p)? .into_iter() .any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock")); if has_cargo { return Ok(PathBuf::from(p)) } } Err(std::io::Error::new(std::io::ErrorKind::NotFound, "Ran out of places to find Cargo.toml")) } /// A function that takes all the textures inside the resources/textures folder and creates a texture atlas from them. pub fn initialize_atlas(&mut self) { let texture_path = "resources/textures/".to_string(); let mut paths: Vec = Vec::new(); for path in std::fs::read_dir(Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "/resources/textures").unwrap() { paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap()); } self.set_texture_atlas_by_paths(paths); } /// A function that writes on the buffers and sets the geometry and index buffer of the `Renderer2D` with the given data. fn set_buffers(&mut self, new_geometry_buffer: Vec, new_index_buffer: Vec) { self.draw_info[0].update_vertex_buffer(&self.device, &self.queue, new_geometry_buffer); self.draw_info[0].update_index_buffer(&self.device, &self.queue, new_index_buffer); //self.render_pass[0].set_vertex_buffer(&self.device, &self.queue, new_geometry_buffer); //self.render_pass[0].set_index_buffer(&self.device, &self.queue, new_index_buffer); } /// A function that adds data to the already existing geometry and index buffers of the `Renderer2D`. fn push_to_buffers(&mut self, new_geometry_data: &mut Vec, new_index_buffer: &mut Vec) { self.render_pass[0].push_to_vertex_buffer(&self.device, new_geometry_data); self.render_pass[0].push_to_index_buffer(&self.device, new_index_buffer); } /// A function that clears the geometry and index buffers of the `Renderer2D`. fn clear_buffers(&mut self) { todo!() } /// A function to just draw a textured quad at a given position. pub fn draw_texture_at(&mut self, texture_path: String, position: p3) { let region = self.graphic_resource_manager.texture_locations().get(&texture_path).unwrap(); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32/ self.config.width as f32) * 0.5, (dim_y as f32/ self.config.height as f32) * 0.5); let vertices: &mut Vec = &mut vec![ Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.u0(), region.v0()], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.u0(), region.v1()], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.u1(), region.v1()], [0.0, 0.0, 0.0, 0.0] ) , Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.u1(), region.v0()], [0.0, 0.0, 0.0, 0.0] ) ]; let buffer_size = self.render_pass[0].vertex_data().len() as u16; let indices: &mut Vec = &mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]; self.push_to_buffers(vertices, indices) } /// A function to draw text at a given position. pub fn draw_text_at(&mut self, text: &str, font: String, size: f32, position: p2, color: impl Color) { //self.set_font_atlas(font.clone()); let wgpu_color = color.to_wgpu(); let vert_color = [wgpu_color.r as f32, wgpu_color.g as f32, wgpu_color.b as f32, wgpu_color.a as f32]; let screen_position = p2::new(position.x()/self.config.width as f32, position.y()/self.config.height as f32); let scale_factor = size / self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().size(); let line_height = (self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().line_height() / self.config.height as f32) * scale_factor; let lines = text.split("\n").collect::>(); let mut x_offset = 0.0; let mut y_offset = 0.0; for line in lines { for c in line.chars() { let region = self.get_glyph_region(c, font.clone()); let (dim_x, dim_y) = region.dimensions(); let w = (dim_x as f32 / self.config.width as f32) * scale_factor; let h = (dim_y as f32 / self.config.height as f32) * scale_factor; let offset_x_px = (region.offset_x() / self.config.width as f32) * scale_factor; let offset_y_px = (region.offset_y() / self.config.height as f32) * scale_factor; let glyph_left = screen_position.x() + x_offset + offset_x_px; let glyph_top = screen_position.y() - offset_y_px - y_offset; let glyph_right = glyph_left + w; let glyph_bottom = glyph_top - h; let vertices: &mut Vec = &mut vec![ Vertex::new([ glyph_left, glyph_top, 0.0 ], [region.u0(), region.v0()], vert_color), Vertex::new([ glyph_left, glyph_bottom, 0.0 ], [region.u0(), region.v1()], vert_color), Vertex::new([ glyph_right, glyph_bottom, 0.0 ], [region.u1(), region.v1()], vert_color), Vertex::new([ glyph_right, glyph_top, 0.0 ], [region.u1(), region.v0()], vert_color), ]; let buffer_size = self.render_pass[1].vertex_data().len() as u16; let indices: &mut Vec = &mut vec![ buffer_size, buffer_size + 1, buffer_size + 3, buffer_size + 1, buffer_size + 2, buffer_size + 3, ]; x_offset += (region.advance() / self.config.width as f32) * scale_factor; self.push_to_buffers(vertices, indices); } y_offset += line_height; x_offset = 0.0; } } fn add_text_to_buffers(&self, draw_index: usize, text: String, font: String, size: f32, position: p2, color: wgpu::Color) -> (Vec, Vec) { let vert_color = [color.r as f32, color.g as f32, color.b as f32, color.a as f32]; let screen_position = p2::new(position.x()/self.config.width as f32, position.y()/self.config.height as f32); let scale_factor = size / self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().size(); let line_height = (self.graphic_resource_manager.fonts().iter().find(|f| f.name() == font).unwrap().line_height() / self.config.height as f32) * scale_factor; let lines = text.split("\n").collect::>(); let mut x_offset = 0.0; let mut y_offset = 0.0; let mut vertex_data = Vec::new(); let mut index_data = Vec::new(); for line in lines { for c in line.chars() { let region = self.get_glyph_region(c, font.clone()); let (dim_x, dim_y) = region.dimensions(); let w = (dim_x as f32 / self.config.width as f32) * scale_factor; let h = (dim_y as f32 / self.config.height as f32) * scale_factor; let offset_x_px = (region.offset_x() / self.config.width as f32) * scale_factor; let offset_y_px = (region.offset_y() / self.config.height as f32) * scale_factor; let glyph_left = screen_position.x() + x_offset + offset_x_px; let glyph_top = screen_position.y() - offset_y_px - y_offset; let glyph_right = glyph_left + w; let glyph_bottom = glyph_top - h; let vertices: &mut Vec = &mut vec![ Vertex::new([ glyph_left, glyph_top, 0.0 ], [region.u0(), region.v0()], vert_color), Vertex::new([ glyph_left, glyph_bottom, 0.0 ], [region.u0(), region.v1()], vert_color), Vertex::new([ glyph_right, glyph_bottom, 0.0 ], [region.u1(), region.v1()], vert_color), Vertex::new([ glyph_right, glyph_top, 0.0 ], [region.u1(), region.v0()], vert_color), ]; let buffer_size = vertex_data.len() as u16; let indices: &mut Vec = &mut vec![ buffer_size, buffer_size + 1, buffer_size + 3, buffer_size + 1, buffer_size + 2, buffer_size + 3, ]; x_offset += (region.advance() / self.config.width as f32) * scale_factor; vertex_data.append(vertices); index_data.append(indices); } y_offset += line_height; x_offset = 0.0; } (vertex_data, index_data) } fn find_priority_camera(&self, cameras: Vec) -> usize { let mut priority = 0; let mut position = 0; for (i, camera) in cameras.iter().enumerate() { if camera.priority() < priority { priority = camera.priority(); position = i; } } position } fn setup_camera<'b>(&mut self, cameras: Vec, scene: &'b Scene) -> (&'b Position2D, &'b Camera2D){ let cam = cameras.get( self.find_priority_camera( cameras.iter().map(|e| *scene.get_component::(*e).unwrap() ).collect::>()) ).unwrap(); let camera_component = scene.get_component::(*cam).unwrap(); let camera_position = scene.get_component::(*cam).unwrap().position(); let camera = RenderCamera::new( camera_component.zoom(), camera_component.dimensions(), v3::new(camera_position.as_vec().x(), camera_position.as_vec().y(), 0.0)); let mut camera_uniform = CameraUniform::new(); camera_uniform.update_view_proj(&camera); let camera_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera Buffer"), contents: bytemuck::cast_slice(&[camera_uniform]), usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST, }); let camera_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let camera_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: camera_buffer.as_entire_binding(), }], label: Some("camera_bind_group"), }); self.camera = camera; self.camera_buffer = camera_buffer; self.camera_uniform = camera_uniform; self.camera_bind_group = camera_bind_group; (camera_position, camera_component) } /// A function to automatically render all the entities of the `Scene` struct. /// The entities must have the `Render2D` and `Transform2D` components to be rendered as well as set visible. pub fn render_scene_2d(&mut self, scene: &Scene) { let cameras = scene.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Camera2D::type_id()])); if cameras.is_empty() { return; } let entities = scene.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Render2D::type_id()])); let texts = scene.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), comet_ecs::Text::type_id()])); self.setup_camera(cameras, scene); let mut vertex_buffer: Vec = Vec::new(); let mut index_buffer: Vec = Vec::new(); for entity in entities { let renderer_component = scene.get_component::(entity).unwrap(); let transform_component = scene.get_component::(entity).unwrap(); if renderer_component.is_visible() { let mut position = transform_component.position().clone(); position.set_x(position.x() / self.config().width as f32); position.set_y(position.y() / self.config().height as f32); let mut t_region: Option<&TextureRegion> = None; match self.get_texture_region(renderer_component.get_texture().to_string()) { Some(texture_region) => { t_region = Some(texture_region); }, None => continue, } let region = t_region.unwrap(); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32/ self.config().width as f32) * 0.5, (dim_y as f32/ self.config().height as f32) * 0.5); let buffer_size = vertex_buffer.len() as u16; vertex_buffer.append(&mut vec![ Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0], [region.u0(), region.v0()], [1.0, 1.0, 1.0, 1.0] ), Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u0(), region.v1()], [1.0, 1.0, 1.0, 1.0] ), Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u1(), region.v1()], [1.0, 1.0, 1.0, 1.0] ) , Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0], [region.u1(), region.v0()], [1.0, 1.0, 1.0, 1.0] ) ]); index_buffer.append(&mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]); } } for text in texts { let component = scene.get_component::(text).unwrap(); let transform = scene.get_component::(text).unwrap(); if component.is_visible() { let draw_index = self.draw_info.iter().enumerate().find(|(_, d)| d.name() == &format!("{}", component.font())).unwrap().0; let (vertices, indices) = self.add_text_to_buffers(draw_index, component.content().to_string(), component.font().to_string(), component.font_size(), p2::from_vec(transform.position().as_vec()), component.color().to_wgpu()); let draw = self.draw_info.iter_mut().find(|d| d.name() == &format!("{}", component.font())).unwrap(); draw.update_vertex_buffer(&self.device, &self.queue, vertices); draw.update_index_buffer(&self.device, &self.queue, indices); } } self.set_buffers(vertex_buffer, index_buffer); } fn sort_entities_by_position(&self, entity_data: Vec<(usize, Position2D)>) -> Vec { let mut sorted_entities: Vec = vec![]; let mut entity_data = entity_data.clone(); entity_data.sort_by(|a, b| a.1.x().partial_cmp(&b.1.x()).unwrap()); for (i, _) in entity_data { sorted_entities.push(i); } sorted_entities } /// A function to render the screen from top to bottom. /// Generally useful in top-down games to render trees in front of players for example. pub fn render_layered_scene_2d(&mut self, world: &Scene) { let cameras = world.get_entities_with(ComponentSet::from_ids(vec![Camera2D::type_id()])); if cameras == vec![] { return; } let (camera_position, camera_component) = self.setup_camera(cameras, world); let mut visible_entities: Vec = vec![]; for entity in world.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Render2D::type_id()])) { let entity_id = entity as usize; if !camera_component .in_view_frustum(*camera_position, *world.get_component::(entity_id).unwrap().position()) { continue; } match world.get_component::(entity_id) { Some(render) => { if !render.is_visible() { continue; } if let Some(cam) = world.get_component::(entity_id) { continue; } visible_entities.push(entity_id); } None => { continue; } } } let entity_data = { let mut data: Vec<(usize, Position2D)> = vec![]; for entity in visible_entities { data.push((entity, *world.get_component::(entity).unwrap().position())); } data }; let visible_entities = self.sort_entities_by_position(entity_data); let mut vertex_buffer: Vec = Vec::new(); let mut index_buffer: Vec = Vec::new(); for entity in visible_entities { let renderer_component = world.get_component::(entity); let transform_component = world.get_component::(entity); if renderer_component.unwrap().is_visible() { let mut position = transform_component.unwrap().position().clone(); position.set_x(position.x() / self.config().width as f32); position.set_y(position.y() / self.config().height as f32); let region = self.get_texture_region(renderer_component.unwrap().get_texture().to_string()).unwrap(); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32 / self.config().width as f32) * 0.5, (dim_y as f32 / self.config().height as f32) * 0.5); let buffer_size = vertex_buffer.len() as u16; vertex_buffer.append(&mut vec![ Vertex::new([-bound_x + position.x(), bound_y + position.y(), 0.0], [region.u0(), region.v0()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u0(), region.v1()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([bound_x + position.x(), -bound_y + position.y(), 0.0], [region.u1(), region.v1()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([bound_x + position.x(), bound_y + position.y(), 0.0], [region.u1(), region.v0()], [0.0, 0.0, 0.0, 0.0]) ]); index_buffer.append(&mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]); } } self.set_buffers(vertex_buffer, index_buffer); } pub fn update(&mut self) -> f32 { let now = Instant::now(); self.delta_time = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds self.last_frame_time = now; self.delta_time } pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let output_view = output.texture.create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &output_view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(self.clear_color), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); for i in 0..self.draw_info.len() { render_pass.set_pipeline(&self.universal_render_pipeline); render_pass.set_bind_group(0, self.draw_info[i].texture(), &[]); render_pass.set_bind_group(1, &self.camera_bind_group, &[]); render_pass.set_vertex_buffer(0, self.draw_info[i].vertex_buffer().slice(..)); render_pass.set_index_buffer(self.draw_info[i].index_buffer().slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..self.draw_info[i].num_indices(), 0, 0..1); } } self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } } impl<'a> Renderer for Renderer2D<'a> { fn new(window: Arc, clear_color: Option) -> Renderer2D<'a> { Self::new(window, clear_color) } fn size(&self) -> PhysicalSize { self.size() } fn resize(&mut self, new_size: PhysicalSize) { self.resize(new_size) } fn update(&mut self) -> f32 { self.update() } fn render(&mut self) -> Result<(), wgpu::SurfaceError> { self.render() } }