mirror of
https://github.com/lisk77/comet.git
synced 2025-10-24 13:58:49 +00:00
373 lines
12 KiB
Rust
373 lines
12 KiB
Rust
use crate::lerp;
|
|
use image::{DynamicImage, GenericImage, Rgba};
|
|
use rand::Rng;
|
|
|
|
fn permutation(seed: i32, value: i32) -> i32 {
|
|
const P: [i32; 256] = [
|
|
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30,
|
|
69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94,
|
|
252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171,
|
|
168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60,
|
|
211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1,
|
|
216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86,
|
|
164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118,
|
|
126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170,
|
|
213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39,
|
|
253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34,
|
|
242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49,
|
|
192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
|
|
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180,
|
|
];
|
|
|
|
P[((value ^ seed) & 255) as usize]
|
|
}
|
|
|
|
// TODO
|
|
// Make noise struct keep their generated noise
|
|
// Create noise trait as a common interface for all noise types
|
|
// Use noise trait to let the generated noise be outputed in different ways like images or Vec<f32>
|
|
|
|
pub trait NoiseGenerator {
|
|
fn generate(&self) -> Vec<f32>;
|
|
fn generate_image(&self) -> DynamicImage;
|
|
}
|
|
|
|
/// White noise generator.
|
|
pub struct WhiteNoise {
|
|
size: (usize, usize),
|
|
}
|
|
|
|
impl WhiteNoise {
|
|
/// Creates a white noise generator with the given parameters.
|
|
pub fn new(width: usize, height: usize) -> Self {
|
|
Self {
|
|
size: (width, height),
|
|
}
|
|
}
|
|
|
|
/// Sets the width of the noise image.
|
|
pub fn set_width(&mut self, width: usize) {
|
|
self.size.0 = width;
|
|
}
|
|
|
|
/// Sets the height of the noise image.
|
|
pub fn set_height(&mut self, height: usize) {
|
|
self.size.1 = height;
|
|
}
|
|
|
|
/// Sets the size of the noise image.
|
|
pub fn set_size(&mut self, width: usize, height: usize) {
|
|
self.size = (width, height);
|
|
}
|
|
|
|
/// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`.
|
|
pub fn generate(size: (usize, usize)) -> Vec<f32> {
|
|
let mut rng = rand::rng();
|
|
let mut noise = Vec::with_capacity(size.0 * size.1);
|
|
|
|
for _ in 0..size.0 * size.1 {
|
|
noise.push(rng.random_range(0.0..1.0));
|
|
}
|
|
|
|
noise
|
|
}
|
|
|
|
/// Generates white noise as a `DynamicImage`.
|
|
pub fn generate_image(size: (usize, usize)) -> DynamicImage {
|
|
let mut rng = rand::rng();
|
|
let mut image = DynamicImage::new_rgb8(size.0 as u32, size.1 as u32);
|
|
|
|
for y in 0..size.1 {
|
|
for x in 0..size.0 {
|
|
let value = (rng.random_range(0.0..1.0) * 255.0) as u8;
|
|
image.put_pixel(x as u32, y as u32, Rgba([value, value, value, 255]));
|
|
}
|
|
}
|
|
|
|
image
|
|
}
|
|
}
|
|
|
|
impl NoiseGenerator for WhiteNoise {
|
|
/// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`.
|
|
fn generate(&self) -> Vec<f32> {
|
|
let mut rng = rand::rng();
|
|
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
|
|
|
for _ in 0..self.size.0 * self.size.1 {
|
|
noise.push(rng.random_range(0.0..1.0));
|
|
}
|
|
|
|
noise
|
|
}
|
|
|
|
/// Generates white noise as a `DynamicImage`.
|
|
fn generate_image(&self) -> DynamicImage {
|
|
let mut rng = rand::rng();
|
|
let mut image = DynamicImage::new_rgb8(self.size.0 as u32, self.size.1 as u32);
|
|
|
|
for y in 0..self.size.1 {
|
|
for x in 0..self.size.0 {
|
|
let value = (rng.random_range(0.0..1.0) * 255.0) as u8;
|
|
image.put_pixel(x as u32, y as u32, Rgba([value, value, value, 255]));
|
|
}
|
|
}
|
|
|
|
image
|
|
}
|
|
}
|
|
|
|
/// Perlin noise generator.
|
|
pub struct PerlinNoise {
|
|
size: (usize, usize),
|
|
frequency: f64,
|
|
seed: u32,
|
|
}
|
|
|
|
impl PerlinNoise {
|
|
/// Create a new Perlin noise generator with the given parameters.
|
|
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
|
|
Self {
|
|
size: (width, height),
|
|
frequency,
|
|
seed,
|
|
}
|
|
}
|
|
|
|
/// Set the width of the noise image.
|
|
pub fn set_width(&mut self, width: usize) {
|
|
self.size.0 = width;
|
|
}
|
|
|
|
/// Set the height of the noise image.
|
|
pub fn set_height(&mut self, height: usize) {
|
|
self.size.1 = height;
|
|
}
|
|
|
|
/// Set the size of the noise image.
|
|
pub fn set_size(&mut self, width: usize, height: usize) {
|
|
self.size = (width, height);
|
|
}
|
|
|
|
/// Set the frequency of the noise.
|
|
pub fn set_frequency(&mut self, frequency: f64) {
|
|
self.frequency = frequency;
|
|
}
|
|
|
|
/// Set the seed for the random number generator.
|
|
pub fn set_seed(&mut self, seed: u32) {
|
|
self.seed = seed;
|
|
}
|
|
|
|
/// Generates Perlin noise as a `Vec<f32>`. Size of the vector is `width * height`.
|
|
pub fn generate(&self) -> Vec<f32> {
|
|
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
|
|
|
for y in 0..self.size.1 {
|
|
for x in 0..self.size.0 {
|
|
let nx = x as f64 / self.size.0 as f64;
|
|
let ny = y as f64 / self.size.1 as f64;
|
|
let value = self.perlin(nx * self.frequency, ny * self.frequency);
|
|
noise.push((value + 1.0) * 0.5);
|
|
}
|
|
}
|
|
|
|
noise
|
|
}
|
|
|
|
/// Generates Perlin noise with multiple octaves as a `Vec<f32>`.
|
|
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
|
|
let mut noise = vec![0.0; self.size.0 * self.size.1];
|
|
let mut amplitude = 1.0;
|
|
let mut frequency = self.frequency;
|
|
let mut max_value = 0.0;
|
|
|
|
for _ in 0..octaves {
|
|
for y in 0..self.size.1 {
|
|
for x in 0..self.size.0 {
|
|
let nx = x as f64 / self.size.0 as f64;
|
|
let ny = y as f64 / self.size.1 as f64;
|
|
noise[y * self.size.0 + x] +=
|
|
self.perlin(nx * frequency, ny * frequency) as f32 * amplitude as f32;
|
|
}
|
|
}
|
|
max_value += amplitude;
|
|
amplitude *= persistence;
|
|
frequency *= 2.0;
|
|
}
|
|
|
|
noise
|
|
.iter_mut()
|
|
.for_each(|value| *value /= max_value as f32);
|
|
|
|
noise
|
|
.iter_mut()
|
|
.for_each(|value| *value = (*value + 1.0) * 0.5);
|
|
|
|
noise
|
|
}
|
|
|
|
/// A raw Perlin noise function implementation.
|
|
fn perlin(&self, x: f64, y: f64) -> f32 {
|
|
let xi = x.floor() as i32 & 255;
|
|
let yi = y.floor() as i32 & 255;
|
|
|
|
let xf = x - x.floor();
|
|
let yf = y - y.floor();
|
|
|
|
let u = Self::fade(xf);
|
|
let v = Self::fade(yf);
|
|
|
|
let a = permutation(self.seed as i32, xi) + yi;
|
|
let b = permutation(self.seed as i32, xi + 1) + yi;
|
|
|
|
let aa = permutation(self.seed as i32, a);
|
|
let ab = permutation(self.seed as i32, a + 1);
|
|
let ba = permutation(self.seed as i32, b);
|
|
let bb = permutation(self.seed as i32, b + 1);
|
|
|
|
let x1 = lerp(
|
|
u as f32,
|
|
Self::grad(permutation(self.seed as i32, aa), xf, yf) as f32,
|
|
Self::grad(permutation(self.seed as i32, ba), xf - 1.0, yf) as f32,
|
|
);
|
|
let x2 = lerp(
|
|
u as f32,
|
|
Self::grad(
|
|
permutation(self.seed as i32, permutation(self.seed as i32, ab)),
|
|
xf,
|
|
yf - 1.0,
|
|
) as f32,
|
|
Self::grad(
|
|
permutation(self.seed as i32, permutation(self.seed as i32, bb)),
|
|
xf - 1.0,
|
|
yf - 1.0,
|
|
) as f32,
|
|
);
|
|
|
|
lerp(v as f32, x1, x2)
|
|
}
|
|
|
|
fn fade(t: f64) -> f64 {
|
|
t * t * t * (t * (t * 6.0 - 15.0) + 10.0)
|
|
}
|
|
|
|
fn grad(hash: i32, x: f64, y: f64) -> f64 {
|
|
let h = hash & 3;
|
|
let u = if h & 2 == 0 { x } else { -x };
|
|
let v = if h & 1 == 0 { y } else { -y };
|
|
u + v
|
|
}
|
|
}
|
|
|
|
/// Value noise generator.
|
|
pub struct ValueNoise {
|
|
size: (usize, usize),
|
|
frequency: f64,
|
|
seed: u32,
|
|
}
|
|
|
|
impl ValueNoise {
|
|
/// Create a new Perlin noise generator with the given parameters.
|
|
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
|
|
Self {
|
|
size: (width, height),
|
|
frequency,
|
|
seed,
|
|
}
|
|
}
|
|
|
|
fn noise(&self, p: (f32, f32)) -> f32 {
|
|
let i = (p.0.floor() as i32, p.1.floor() as i32);
|
|
let f = (p.0.fract(), p.1.fract());
|
|
|
|
// cubic interpolant
|
|
let u = (f.0 * f.0 * (3.0 - 2.0 * f.0), f.1 * f.1 * (3.0 - 2.0 * f.1));
|
|
|
|
let a = permutation(self.seed as i32, i.0) + i.1;
|
|
let b = permutation(self.seed as i32, i.0 + 1) + i.1;
|
|
|
|
lerp(
|
|
lerp(
|
|
permutation(self.seed as i32, a) as f32 / 255.0 * 2.0 - 1.0,
|
|
permutation(self.seed as i32, b) as f32 / 255.0 * 2.0 - 1.0,
|
|
u.0,
|
|
),
|
|
lerp(
|
|
permutation(self.seed as i32, a + 1) as f32 / 255.0 * 2.0 - 1.0,
|
|
permutation(self.seed as i32, b + 1) as f32 / 255.0 * 2.0 - 1.0,
|
|
u.0,
|
|
),
|
|
u.1,
|
|
)
|
|
}
|
|
|
|
/// Generates value noise as a `Vec<f32>`. Size of the vector is `width * height`.
|
|
pub fn generate(&self) -> Vec<f32> {
|
|
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
|
let mut max_amplitude = 0.0;
|
|
let mut amplitude = 0.5;
|
|
|
|
for _ in 0..4 {
|
|
max_amplitude += amplitude;
|
|
amplitude *= 0.5;
|
|
}
|
|
|
|
for y in 0..self.size.1 {
|
|
for x in 0..self.size.0 {
|
|
let mut uv = (
|
|
x as f32 / self.size.0 as f32 * self.frequency as f32,
|
|
y as f32 / self.size.1 as f32 * self.frequency as f32,
|
|
);
|
|
|
|
let mut f = 0.0;
|
|
let mut amplitude = 0.5;
|
|
|
|
f += amplitude * self.noise(uv);
|
|
uv = (uv.0 * 2.0, uv.1 * 2.0);
|
|
amplitude *= 0.5;
|
|
f = ((f / max_amplitude) + 1.0) * 0.5;
|
|
|
|
noise.push(f);
|
|
}
|
|
}
|
|
|
|
noise
|
|
}
|
|
|
|
/// Generates value noise with multiple octaves as a `Vec<f32>`.
|
|
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
|
|
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
|
let mut max_amplitude = 0.0;
|
|
let mut amplitude = 1.0;
|
|
|
|
for _ in 0..octaves {
|
|
max_amplitude += amplitude;
|
|
amplitude *= persistence;
|
|
}
|
|
|
|
for y in 0..self.size.1 {
|
|
for x in 0..self.size.0 {
|
|
let mut uv = (
|
|
x as f32 / self.size.0 as f32 * self.frequency as f32,
|
|
y as f32 / self.size.1 as f32 * self.frequency as f32,
|
|
);
|
|
|
|
let mut f = 0.0;
|
|
let mut amplitude = 1.0;
|
|
|
|
for _ in 0..octaves {
|
|
f += amplitude * self.noise(uv);
|
|
uv = (uv.0 * 2.0, uv.1 * 2.0);
|
|
amplitude *= persistence as f32;
|
|
}
|
|
|
|
f = ((f / max_amplitude as f32) + 1.0) * 0.5;
|
|
|
|
noise.push(f);
|
|
}
|
|
}
|
|
|
|
noise
|
|
}
|
|
}
|