lambda/include/ast.hpp

49 lines
1.5 KiB
C++

#ifndef AST_HPP
#define AST_HPP
#include <memory>
#include <string>
// ast stuff lul
struct Expr {
virtual ~Expr() = default;
virtual std::unique_ptr<Expr> clone() const = 0;
};
// represents a simple symbol like "x" or even "thisIsACoolFunctionTrustme100"
// (ikik the true lambda calculus professionals would now scream at me and say
// "lambda calculus has only one letter variables!", to which id say ¯\_(ツ)_/¯
struct Variable : Expr {
std::string name;
Variable(std::string n) : name(std::move(n)) {}
std::unique_ptr<Expr> clone() const override {
return std::make_unique<Variable>(name);
}
};
// represents a function itself like \ x . x
struct Abstraction : Expr {
std::string param;
std::unique_ptr<Expr> body;
Abstraction(std::string p, std::unique_ptr<Expr> b) : param(std::move(p)), body(std::move(b)) {}
std::unique_ptr<Expr> clone() const override {
return std::make_unique<Abstraction>(param, body->clone());
}
};
// wouldnt be turing complete if we couldnt apply to these functions innit
// (\ x . x) a would be such an application
// note that parenthesis are your savior because (\ x y . x) (\ x . x) b and
// (\ x y . x) ((\ x . x) b ) are not the same thing
struct Application : Expr {
std::unique_ptr<Expr> left, right;
Application(std::unique_ptr<Expr> l, std::unique_ptr<Expr> r) : left(std::move(l)), right(std::move(r)) {}
std::unique_ptr<Expr> clone() const override {
return std::make_unique<Application>(left->clone(), right->clone());
}
};
#endif // AST_HPP