comet/crates/comet_renderer/src/renderer2d.rs

929 lines
33 KiB
Rust
Executable file

use crate::{
camera::{CameraUniform, RenderCamera},
draw_info::DrawInfo,
renderer::Renderer,
};
use comet_colors::Color;
use comet_ecs::{Camera2D, Component, Position2D, Render, Render2D, Scene, Text, Transform2D};
use comet_log::*;
use comet_math::{p2, v2, v3};
use comet_resources::texture_atlas::TextureRegion;
use comet_resources::{graphic_resource_manager::GraphicResourceManager, Texture, Vertex};
use comet_structs::ComponentSet;
use std::iter;
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Instant;
use wgpu::naga::ShaderStage;
use wgpu::util::DeviceExt;
use wgpu::BufferUsages;
use winit::dpi::PhysicalSize;
use winit::window::Window;
pub struct Renderer2D<'a> {
surface: wgpu::Surface<'a>,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
size: PhysicalSize<u32>,
universal_render_pipeline: wgpu::RenderPipeline,
texture_bind_group_layout: wgpu::BindGroupLayout,
texture_sampler: wgpu::Sampler,
camera: RenderCamera,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
draw_info: Vec<DrawInfo>,
graphic_resource_manager: GraphicResourceManager,
delta_time: f32,
last_frame_time: Instant,
clear_color: wgpu::Color,
}
impl<'a> Renderer2D<'a> {
pub fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Renderer2D<'a> {
let size = window.inner_size(); //PhysicalSize::<u32>::new(1920, 1080);
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::PRIMARY,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
let adapter = pollster::block_on(instance.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
}))
.unwrap();
let (device, queue) = pollster::block_on(adapter.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
memory_hints: Default::default(),
},
None, // Trace path
))
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Universal Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()),
});
let graphic_resource_manager = GraphicResourceManager::new();
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("Universal Texture Bind Group Layout"),
});
let camera = RenderCamera::new(1.0, v2::new(2.0, 2.0), v3::new(0.0, 0.0, 0.0));
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Universal Camera Bind Group Layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("Universal Camera Bind Group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Universal Render Pipeline Layout"),
bind_group_layouts: &[&texture_bind_group_layout, &camera_bind_group_layout],
push_constant_ranges: &[],
});
let universal_render_pipeline =
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Universal Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
},
};
let texture_sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
lod_min_clamp: 0.0,
lod_max_clamp: 100.0,
compare: None,
anisotropy_clamp: 16,
border_color: None,
..Default::default()
});
let mut draw_info: Vec<DrawInfo> = Vec::new();
draw_info.push(DrawInfo::new(
"Universal Draw".to_string(),
&device,
&Texture::from_image(
&device,
&queue,
&image::DynamicImage::new(1, 1, image::ColorType::Rgba8),
None,
false,
)
.unwrap(),
&texture_bind_group_layout,
&texture_sampler,
vec![],
vec![],
));
Self {
surface,
device,
queue,
config,
size,
universal_render_pipeline,
texture_bind_group_layout,
texture_sampler,
camera,
camera_uniform,
camera_buffer,
camera_bind_group,
draw_info,
graphic_resource_manager,
delta_time: 0.0,
last_frame_time: Instant::now(),
clear_color,
}
}
pub fn dt(&self) -> f32 {
self.delta_time
}
pub fn config(&self) -> &wgpu::SurfaceConfiguration {
&self.config
}
pub fn size(&self) -> PhysicalSize<u32> {
self.size
}
pub fn resize(&mut self, new_size: PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn add_draw_call(&mut self, draw_call: String, texture: Texture) {
let draw_info = DrawInfo::new(
draw_call,
&self.device,
&texture,
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(draw_info);
}
/// A function that loads a shader from the resources/shaders dir given the full name of the shader file.
pub fn load_shader(&mut self, file_name: &str, shader_stage: Option<ShaderStage>) {
self.graphic_resource_manager
.load_shader(
shader_stage,
((Self::get_project_root()
.unwrap()
.as_os_str()
.to_str()
.unwrap()
.to_string()
+ "/res/shaders/")
.as_str()
.to_string()
+ file_name)
.as_str(),
&self.device,
)
.unwrap();
info!("Shader ({}) loaded successfully", file_name);
}
/// A function that loads a list of shaders from the given filenames out of the resources/shaders dir
pub fn load_shaders(&mut self, shader_stages: Vec<Option<ShaderStage>>, file_names: Vec<&str>) {
for (i, file_name) in file_names.iter().enumerate() {
self.load_shader(file_name, shader_stages[i].clone());
info!("Shader ({}) loaded successfully", file_name);
}
}
/// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded.
pub fn apply_shader(&mut self, shader: &str) {
let module = match self.graphic_resource_manager.get_shader(shader) {
Some(module) => module,
None => {
error!("Shader not found");
return;
}
};
}
/// A function to revert back to the base shader of the `Renderer2D`
pub fn apply_base_shader(&mut self) {
todo!()
}
/// A function to load a TTF font from the specified path
pub fn load_font(&mut self, path: &str, size: f32) {
self.graphic_resource_manager.load_font(path, size);
let atlas = self
.graphic_resource_manager
.fonts()
.iter()
.find(|f| f.name() == path)
.unwrap()
.glyphs()
.atlas();
let font_info = DrawInfo::new(
format!("{}", path),
&self.device,
&Texture::from_image(&self.device, &self.queue, atlas, None, false).unwrap(),
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(font_info);
}
/// An interface for getting the location of the texture in the texture atlas.
pub fn get_texture_region(&self, texture_path: String) -> Option<&TextureRegion> {
if !self
.graphic_resource_manager
.texture_atlas()
.textures()
.contains_key(&texture_path)
{
error!("Texture {} not found in atlas", &texture_path);
}
self.graphic_resource_manager
.texture_atlas()
.textures()
.get(&texture_path)
}
/// A function to get the `TextureRegion` of a specified glyph
pub fn get_glyph_region(&self, glyph: char, font: String) -> &TextureRegion {
let font_atlas = self
.graphic_resource_manager
.fonts()
.iter()
.find(|f| f.name() == font)
.unwrap();
font_atlas.get_glyph(glyph).unwrap()
}
/// A function that allows you to set the texture atlas with a list of paths to the textures.
/// The old texture atlas will be replaced with the new one.
pub fn set_texture_atlas_by_paths(&mut self, paths: Vec<String>) {
self.graphic_resource_manager.create_texture_atlas(paths);
self.draw_info[0].set_texture(
&self.device,
&self.texture_bind_group_layout,
&Texture::from_image(
&self.device,
&self.queue,
self.graphic_resource_manager.texture_atlas().atlas(),
None,
false,
)
.unwrap(),
);
}
fn set_texture_atlas(&mut self, texture_atlas: Texture) {
self.draw_info[0].set_texture(
&self.device,
&self.texture_bind_group_layout,
&texture_atlas,
);
}
fn get_project_root() -> std::io::Result<PathBuf> {
let path = std::env::current_dir()?;
let mut path_ancestors = path.as_path().ancestors();
while let Some(p) = path_ancestors.next() {
let has_cargo = std::fs::read_dir(p)?
.into_iter()
.any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock"));
if has_cargo {
return Ok(PathBuf::from(p));
}
}
Err(std::io::Error::new(
std::io::ErrorKind::NotFound,
"Ran out of places to find Cargo.toml",
))
}
/// A function that takes all the textures inside the resources/textures folder and creates a texture atlas from them.
pub fn initialize_atlas(&mut self) {
let texture_path = "res/textures/".to_string();
let mut paths: Vec<String> = Vec::new();
for path in std::fs::read_dir(
Self::get_project_root()
.unwrap()
.as_os_str()
.to_str()
.unwrap()
.to_string()
+ "/res/textures",
)
.unwrap()
{
paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap());
}
self.set_texture_atlas_by_paths(paths);
}
/// A function that writes on the buffers and sets the geometry and index buffer of the `Renderer2D` with the given data.
fn set_buffers(&mut self, new_geometry_buffer: Vec<Vertex>, new_index_buffer: Vec<u16>) {
self.draw_info[0].update_vertex_buffer(&self.device, &self.queue, new_geometry_buffer);
self.draw_info[0].update_index_buffer(&self.device, &self.queue, new_index_buffer);
}
fn add_text_to_buffers(
&self,
text: String,
font: String,
size: f32,
position: p2,
color: wgpu::Color,
bounds: &mut v2,
) -> (Vec<Vertex>, Vec<u16>) {
let vert_color = [
color.r as f32,
color.g as f32,
color.b as f32,
color.a as f32,
];
let screen_position = p2::new(
position.x() / self.config.width as f32,
position.y() / self.config.height as f32,
);
let font_data = self
.graphic_resource_manager
.fonts()
.iter()
.find(|f| f.name() == font)
.unwrap();
let scale_factor = size / font_data.size();
let line_height = (font_data.line_height() / self.config.height as f32) * scale_factor;
let lines = text
.split("\n")
.map(|s| {
s.split("")
.map(|escape| match escape {
_ if escape == "\t" => " ",
_ => escape,
})
.collect::<String>()
})
.collect::<Vec<String>>();
let mut max_line_width_px = 0.0;
let mut total_height_px = 0.0;
for line in &lines {
let mut line_width_px = 0.0;
for c in line.chars() {
if let Some(region) = font_data.get_glyph(c) {
line_width_px += region.advance();
}
}
if line_width_px > max_line_width_px {
max_line_width_px = line_width_px;
}
total_height_px += font_data.line_height();
}
bounds.set_x((max_line_width_px / self.config.width as f32) * scale_factor);
bounds.set_y((total_height_px / self.config.height as f32) * scale_factor);
let mut x_offset = 0.0;
let mut y_offset = 0.0;
let mut vertex_data = Vec::new();
let mut index_data = Vec::new();
for line in lines {
for c in line.chars() {
let region = self.get_glyph_region(c, font.clone());
let (dim_x, dim_y) = region.dimensions();
let w = (dim_x as f32 / self.config.width as f32) * scale_factor;
let h = (dim_y as f32 / self.config.height as f32) * scale_factor;
let offset_x_px = (region.offset_x() / self.config.width as f32) * scale_factor;
let offset_y_px = (region.offset_y() / self.config.height as f32) * scale_factor;
let glyph_left = screen_position.x() + x_offset + offset_x_px;
let glyph_top = screen_position.y() - offset_y_px - y_offset;
let glyph_right = glyph_left + w;
let glyph_bottom = glyph_top - h;
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex::new(
[glyph_left, glyph_top, 0.0],
[region.u0(), region.v0()],
vert_color,
),
Vertex::new(
[glyph_left, glyph_bottom, 0.0],
[region.u0(), region.v1()],
vert_color,
),
Vertex::new(
[glyph_right, glyph_bottom, 0.0],
[region.u1(), region.v1()],
vert_color,
),
Vertex::new(
[glyph_right, glyph_top, 0.0],
[region.u1(), region.v0()],
vert_color,
),
];
let buffer_size = vertex_data.len() as u16;
let indices: &mut Vec<u16> = &mut vec![
buffer_size,
buffer_size + 1,
buffer_size + 3,
buffer_size + 1,
buffer_size + 2,
buffer_size + 3,
];
x_offset += (region.advance() / self.config.width as f32) * scale_factor;
vertex_data.append(vertices);
index_data.append(indices);
}
y_offset += line_height;
x_offset = 0.0;
}
(vertex_data, index_data)
}
fn find_priority_camera(&self, cameras: Vec<Camera2D>) -> usize {
let mut priority = 0;
let mut position = 0;
for (i, camera) in cameras.iter().enumerate() {
if camera.priority() < priority {
priority = camera.priority();
position = i;
}
}
position
}
fn setup_camera<'b>(
&mut self,
cameras: Vec<usize>,
scene: &'b Scene,
) -> (&'b Position2D, &'b Camera2D) {
let cam = cameras
.get(
self.find_priority_camera(
cameras
.iter()
.map(|e| *scene.get_component::<Camera2D>(*e).unwrap())
.collect::<Vec<Camera2D>>(),
),
)
.unwrap();
let camera_component = scene.get_component::<Camera2D>(*cam).unwrap();
let camera_position = scene.get_component::<Transform2D>(*cam).unwrap().position();
let camera = RenderCamera::new(
camera_component.zoom(),
camera_component.dimensions(),
v3::new(
camera_position.as_vec().x(),
camera_position.as_vec().y(),
0.0,
),
);
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = self
.device
.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Universal Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
self.device
.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Universal Camera Bind Group Layout"),
});
let camera_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("Universal Camera Bind Group"),
});
self.camera = camera;
self.camera_buffer = camera_buffer;
self.camera_uniform = camera_uniform;
self.camera_bind_group = camera_bind_group;
(camera_position, camera_component)
}
/// A function to automatically render all the entities of the `Scene` struct.
/// The entities must have the `Render2D` and `Transform2D` components to be rendered as well as set visible.
pub fn render_scene_2d(&mut self, scene: &mut Scene) {
let cameras = scene.get_entities_with(vec![Transform2D::type_id(), Camera2D::type_id()]);
if cameras.is_empty() {
return;
}
let mut entities =
scene.get_entities_with(vec![Transform2D::type_id(), Render2D::type_id()]);
entities.sort_by(|&a, &b| {
let ra = scene.get_component::<Render2D>(a).unwrap();
let rb = scene.get_component::<Render2D>(b).unwrap();
ra.draw_index().cmp(&rb.draw_index())
});
let texts =
scene.get_entities_with(vec![Transform2D::type_id(), comet_ecs::Text::type_id()]);
self.setup_camera(cameras, scene);
let mut vertex_buffer: Vec<Vertex> = Vec::new();
let mut index_buffer: Vec<u16> = Vec::new();
for entity in entities {
let renderer_component = scene.get_component::<Render2D>(entity).unwrap();
let transform_component = scene.get_component::<Transform2D>(entity).unwrap();
if renderer_component.is_visible() {
let world_position = transform_component.position().clone();
let rotation_angle = transform_component.rotation().to_radians();
let mut t_region: Option<&TextureRegion> = None;
match self.get_texture_region(renderer_component.get_texture().to_string()) {
Some(texture_region) => {
t_region = Some(texture_region);
}
None => continue,
}
let region = t_region.unwrap();
let (dim_x, dim_y) = region.dimensions();
let scale = renderer_component.scale();
let half_width = dim_x as f32 * 0.5 * scale.x();
let half_height = dim_y as f32 * 0.5 * scale.y();
let buffer_size = vertex_buffer.len() as u16;
let world_corners = [
(-half_width, half_height),
(-half_width, -half_height),
(half_width, -half_height),
(half_width, half_height),
];
let cos_angle = rotation_angle.cos();
let sin_angle = rotation_angle.sin();
let mut rotated_world_corners = [(0.0f32, 0.0f32); 4];
for i in 0..4 {
let (x, y) = world_corners[i];
rotated_world_corners[i] = (
x * cos_angle - y * sin_angle + world_position.x(),
x * sin_angle + y * cos_angle + world_position.y(),
);
}
let mut screen_corners = [(0.0f32, 0.0f32); 4];
for i in 0..4 {
screen_corners[i] = (
rotated_world_corners[i].0 / self.config().width as f32,
rotated_world_corners[i].1 / self.config().height as f32,
);
}
vertex_buffer.append(&mut vec![
Vertex::new(
[screen_corners[0].0, screen_corners[0].1, 0.0],
[region.u0(), region.v0()],
[1.0, 1.0, 1.0, 1.0],
),
Vertex::new(
[screen_corners[1].0, screen_corners[1].1, 0.0],
[region.u0(), region.v1()],
[1.0, 1.0, 1.0, 1.0],
),
Vertex::new(
[screen_corners[2].0, screen_corners[2].1, 0.0],
[region.u1(), region.v1()],
[1.0, 1.0, 1.0, 1.0],
),
Vertex::new(
[screen_corners[3].0, screen_corners[3].1, 0.0],
[region.u1(), region.v0()],
[1.0, 1.0, 1.0, 1.0],
),
]);
index_buffer.append(&mut vec![
0 + buffer_size,
1 + buffer_size,
3 + buffer_size,
1 + buffer_size,
2 + buffer_size,
3 + buffer_size,
]);
}
}
for text in texts {
if let Some(component) = scene.get_component_mut::<Text>(text) {
if component.is_visible() {
let font = component.font().to_string();
let size = component.font_size();
let color = component.color().to_wgpu();
let content = component.content().to_string();
let transform = scene.get_component::<Transform2D>(text).unwrap();
let mut bounds = v2::ZERO;
let (vertices, indices) = self.add_text_to_buffers(
content,
font.clone(),
size,
p2::from_vec(transform.position().as_vec()),
color,
&mut bounds,
);
let component = scene.get_component_mut::<Text>(text).unwrap();
component.set_bounds(bounds);
let draw = self
.draw_info
.iter_mut()
.find(|d| d.name() == &format!("{}", font))
.unwrap();
draw.update_vertex_buffer(&self.device, &self.queue, vertices);
draw.update_index_buffer(&self.device, &self.queue, indices);
}
}
}
self.set_buffers(vertex_buffer, index_buffer);
}
fn sort_entities_by_position(&self, entity_data: Vec<(usize, Position2D)>) -> Vec<usize> {
let mut sorted_entities: Vec<usize> = vec![];
let mut entity_data = entity_data.clone();
entity_data.sort_by(|a, b| a.1.x().partial_cmp(&b.1.x()).unwrap());
for (i, _) in entity_data {
sorted_entities.push(i);
}
sorted_entities
}
pub fn update(&mut self) -> f32 {
let now = Instant::now();
self.delta_time = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds
self.last_frame_time = now;
self.delta_time
}
pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let output_view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Universal Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &output_view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(self.clear_color),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.universal_render_pipeline);
for i in 0..self.draw_info.len() {
render_pass.set_bind_group(0, self.draw_info[i].texture(), &[]);
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.draw_info[i].vertex_buffer().slice(..));
render_pass.set_index_buffer(
self.draw_info[i].index_buffer().slice(..),
wgpu::IndexFormat::Uint16,
);
render_pass.draw_indexed(0..self.draw_info[i].num_indices(), 0, 0..1);
}
}
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
}
impl<'a> Renderer for Renderer2D<'a> {
fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Renderer2D<'a> {
Self::new(window, clear_color)
}
fn size(&self) -> PhysicalSize<u32> {
self.size()
}
fn resize(&mut self, new_size: PhysicalSize<u32>) {
self.resize(new_size)
}
fn update(&mut self) -> f32 {
self.update()
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
self.render()
}
}