comet/crates/comet_app/src/app.rs

437 lines
16 KiB
Rust
Executable file

use comet_colors::{Color as ColorTrait, LinearRgba};
use comet_ecs::{Camera2D, Component, Entity, Render2D, Scene, Text, Transform2D, Transform3D};
use comet_input::keyboard::Key;
use comet_log::*;
use comet_renderer::renderer::Renderer;
use comet_sound::*;
use std::any::{type_name, Any, TypeId};
use std::sync::Arc;
use winit::dpi::LogicalSize;
use winit::{
event::*,
event_loop::{ControlFlow, EventLoop},
window::{Icon, Window},
};
use winit_input_helper::WinitInputHelper as InputManager;
/// Represents the presets of an `App` instance.
pub enum ApplicationType {
App2D,
App3D,
}
/// The `App` struct represents the common interface for many different components of the game engine.
/// It provides a unified interface for managing the application's state, input, and ECS.
pub struct App {
title: String,
icon: Option<Icon>,
size: Option<LogicalSize<u32>>,
clear_color: Option<LinearRgba>,
input_manager: InputManager,
delta_time: f32,
update_timer: f32,
game_state: Option<Box<dyn Any>>,
audio: Box<dyn Audio>,
scene: Scene,
should_quit: bool,
}
impl App {
/// Creates a new `App` instance.
pub fn new() -> Self {
Self {
title: "Untitled".to_string(),
icon: None,
size: None,
clear_color: None,
input_manager: InputManager::new(),
delta_time: 0.0,
update_timer: 0.0166667,
game_state: None,
audio: Box::new(KiraAudio::new()),
scene: Scene::new(),
should_quit: false,
}
}
/// Allows to set the title of the `App` instance.
pub fn with_title(mut self, title: impl Into<String>) -> Self {
self.title = title.into();
self
}
/// Allows to set the icon of the `App` instance.
pub fn with_icon(mut self, path: impl AsRef<std::path::Path>) -> Self {
self.icon = Self::load_icon(path.as_ref());
self
}
/// Allows to set the size of the `App` instance.
pub fn with_size(mut self, width: u32, height: u32) -> Self {
self.size = Some(LogicalSize::new(width, height));
self
}
/// Allows to set the clear color of the `App` instance.
pub fn with_clear_color(mut self, clear_color: impl ColorTrait) -> Self {
self.clear_color = Some(clear_color.to_linear());
self
}
/// Allows to set a custom game state struct for the `App` instance.
/// This allows for additional state management and control additionally to the core functionality of the engine.
pub fn with_game_state(mut self, game_state: impl Any + 'static) -> Self {
self.game_state = Some(Box::new(game_state));
self
}
/// Allows to set the preset of the `App` instance.
/// Presets are used to quickly set up the application with a predefined configuration.
/// Currently there are two presets available: App2D and App3D.
/// `App2D` registers the components `Transform2D`, `Render2D`, `Camera2D`, and `Text`.
/// `App3D` registers the components `Transform3D` and `Text`.
/// A working out of the box 3D renderer has not been implemented yet.
pub fn with_preset(mut self, preset: ApplicationType) -> Self {
match preset {
ApplicationType::App2D => {
info!("Creating 2D app!");
self.scene.register_component::<Transform2D>();
self.scene.register_component::<Render2D>();
self.scene.register_component::<Camera2D>();
self.scene.register_component::<Text>();
}
ApplicationType::App3D => {
info!("Creating 3D app!");
self.scene.register_component::<Transform3D>();
self.scene.register_component::<Text>();
}
};
self
}
fn load_icon(path: &std::path::Path) -> Option<Icon> {
let image = match image::open(path) {
Ok(image) => image,
Err(_) => {
error!("Failed loading icon {}", path.display());
return None;
}
};
let rgba_image = image.to_rgba8();
let (width, height) = rgba_image.dimensions();
Some(Icon::from_rgba(rgba_image.into_raw(), width, height).unwrap())
}
/// Retrieves a reference to the registered `game_state` struct in the `App`.
pub fn game_state<T: 'static>(&self) -> Option<&T> {
self.game_state.as_ref()?.downcast_ref::<T>()
}
/// Retrieves a mutable reference to the registered `game_state` struct in the `App`.
pub fn game_state_mut<T: 'static>(&mut self) -> Option<&mut T> {
self.game_state.as_mut()?.downcast_mut::<T>()
}
/// Retrieves a reference to the current `Scene` in the `App`.
pub fn scene(&self) -> &Scene {
&self.scene
}
/// Retrieves a mutable reference to the current `Scene` in the `App`
pub fn scene_mut(&mut self) -> &mut Scene {
&mut self.scene
}
/// Retrieves a reference to the `InputManager`.
pub fn input_manager(&self) -> &InputManager {
&self.input_manager
}
/// Checks if a key is currently pressed.
pub fn key_pressed(&self, key: Key) -> bool {
self.input_manager.key_pressed(key)
}
/// Checks if a key is currently held.
pub fn key_held(&self, key: Key) -> bool {
self.input_manager.key_held(key)
}
/// Checks if a key was released this frame.
pub fn key_released(&self, key: Key) -> bool {
self.input_manager.key_released(key)
}
/// Creates a new entity and returns its ID.
pub fn new_entity(&mut self) -> usize {
self.scene.new_entity() as usize
}
/// Deletes an entity by its ID.
pub fn delete_entity(&mut self, entity_id: usize) {
self.scene.delete_entity(entity_id)
}
/// Gets an immutable reference to an entity by its ID.
pub fn get_entity(&self, entity_id: usize) -> Option<&Entity> {
self.scene.get_entity(entity_id)
}
/// Gets a mutable reference to an entity by its ID.
pub fn get_entity_mut(&mut self, entity_id: usize) -> Option<&mut Entity> {
self.scene.get_entity_mut(entity_id)
}
/// Registers a new component in the `Scene`.
pub fn register_component<C: Component>(&mut self) {
self.scene.register_component::<C>()
}
/// Deregisters a component from the `Scene`.
pub fn deregister_component<C: Component>(&mut self) {
self.scene.deregister_component::<C>()
}
/// Adds a component to an entity by its ID and an instance of the component.
/// Overwrites the previous component if another component of the same type is added.
pub fn add_component<C: Component>(&mut self, entity_id: usize, component: C) {
self.scene.add_component(entity_id, component)
}
/// Removes a component from an entity by its ID.
pub fn remove_component<C: Component>(&mut self, entity_id: usize) {
self.scene.remove_component::<C>(entity_id)
}
/// Returns a reference to a component of an entity by its ID.
pub fn get_component<C: Component>(&self, entity_id: usize) -> Option<&C> {
self.scene.get_component::<C>(entity_id)
}
/// Returns a mutable reference to a component of an entity by its ID.
pub fn get_component_mut<C: Component>(&mut self, entity_id: usize) -> Option<&mut C> {
self.scene.get_component_mut::<C>(entity_id)
}
/// Returns a list of entities that have the given components.
/// The amount of queriable components is limited to 3 such that the `Archetype` creation is more efficient.
/// Otherwise it would be a factorial complexity chaos.
pub fn get_entities_with(&self, components: Vec<TypeId>) -> Vec<usize> {
self.scene.get_entities_with(components)
}
/// Deletes all entities that have the given components.
/// The amount of queriable components is limited to 3 such that the `Archetype` creation is more efficient.
/// Otherwise it would be a factorial complexity chaos.
pub fn delete_entities_with(&mut self, components: Vec<TypeId>) {
self.scene.delete_entities_with(components)
}
/// Iterates over all entities that have the two given components and calls the given function.
pub fn foreach<C: Component, K: Component>(&mut self, func: fn(&mut C, &mut K)) {
self.scene.foreach::<C, K>(func)
}
/// Returns whether an entity has the given component.
pub fn has<C: Component>(&self, entity_id: usize) -> bool {
self.scene.has::<C>(entity_id)
}
/// Registers a prefab with the given name and factory function.
pub fn register_prefab(&mut self, name: &str, factory: comet_ecs::PrefabFactory) {
self.scene.register_prefab(name, factory)
}
/// Spawns a prefab with the given name.
pub fn spawn_prefab(&mut self, name: &str) -> Option<usize> {
self.scene.spawn_prefab(name)
}
/// Checks if a prefab with the given name exists.
pub fn has_prefab(&self, name: &str) -> bool {
self.scene.has_prefab(name)
}
pub fn load_audio(&mut self, name: &str, path: &str) {
self.audio.load(name, path);
}
pub fn play_audio(&mut self, name: &str, looped: bool) {
self.audio.play(name, looped);
}
pub fn pause_audio(&mut self, name: &str) {
self.audio.pause(name);
}
pub fn stop_audio(&mut self, name: &str) {
self.audio.stop(name);
}
pub fn stop_all_audio(&mut self) {
self.audio.stop_all();
}
pub fn update_audio(&mut self, dt: f32) {
self.audio.update(dt);
}
pub fn is_playing(&self, name: &str) -> bool {
self.audio.is_playing(name)
}
pub fn set_volume(&mut self, name: &str, volume: f32) {
self.audio.set_volume(name, volume);
}
/// Stops the event loop and with that quits the `App`.
pub fn quit(&mut self) {
self.should_quit = true;
}
/// Returns the fixed delta time set by the `App`.
pub fn dt(&self) -> f32 {
self.update_timer
}
/// Sets the amount of times the `App` game logic is updated per second
pub fn set_update_rate(&mut self, update_rate: u32) {
if update_rate == 0 {
self.update_timer = f32::INFINITY;
return;
}
self.update_timer = 1.0 / update_rate as f32;
}
fn create_window(
app_title: String,
app_icon: &Option<Icon>,
window_size: &Option<LogicalSize<u32>>,
event_loop: &EventLoop<()>,
) -> Window {
let winit_window = winit::window::WindowBuilder::new().with_title(app_title);
let winit_window = if let Some(icon) = app_icon.clone() {
winit_window.with_window_icon(Some(icon))
} else {
winit_window
};
let winit_window = if let Some(size) = window_size.clone() {
winit_window.with_inner_size(size)
} else {
winit_window
};
winit_window.build(event_loop).unwrap()
}
/// Starts the `App` event loop.
pub fn run<R: Renderer>(
mut self,
setup: fn(&mut App, &mut R),
update: fn(&mut App, &mut R, f32),
) {
info!("Starting up {}!", self.title);
pollster::block_on(async {
let event_loop = EventLoop::new().unwrap();
let window = Arc::new(Self::create_window(
self.title.clone(),
&self.icon,
&self.size,
&event_loop,
));
let mut renderer = R::new(window.clone(), self.clear_color.clone());
info!("Renderer created! ({})", type_name::<R>());
info!("Setting up!");
setup(&mut self, &mut renderer);
let mut time_stack = 0.0;
let mut window_focused = true;
let mut window_occluded = false;
info!("Starting event loop!");
event_loop
.run(|event, elwt| {
if self.should_quit {
elwt.exit()
}
self.input_manager.update(&event);
#[allow(unused_variables)]
match event {
Event::WindowEvent {
ref event,
window_id,
} => match event {
WindowEvent::CloseRequested {} => elwt.exit(),
WindowEvent::Focused(focused) => {
window_focused = *focused;
if window_focused && !window_occluded {
window.request_redraw();
}
}
WindowEvent::Occluded(occluded) => {
window_occluded = *occluded;
if window_focused && !window_occluded {
window.request_redraw();
}
}
WindowEvent::Resized(physical_size) => {
renderer.resize(*physical_size);
}
WindowEvent::ScaleFactorChanged { scale_factor, .. } => {
renderer.set_scale_factor(*scale_factor);
}
WindowEvent::RedrawRequested => {
if window_focused && !window_occluded {
match renderer.render() {
Ok(_) => {}
Err(
wgpu::SurfaceError::Lost
| wgpu::SurfaceError::Outdated,
) => {
let size = renderer.size();
renderer.resize(size);
}
Err(wgpu::SurfaceError::OutOfMemory) => {
error!("Out of memory!");
elwt.exit();
}
Err(wgpu::SurfaceError::Timeout) => {
warn!("Surface timeout - skipping frame");
}
}
}
}
_ => {}
},
Event::AboutToWait => {
elwt.set_control_flow(ControlFlow::Poll);
self.delta_time = renderer.update();
if self.dt() != f32::INFINITY {
time_stack += self.delta_time;
while time_stack > self.update_timer {
let time = self.dt();
update(&mut self, &mut renderer, time);
time_stack -= self.update_timer;
}
}
if window_focused && !window_occluded {
window.request_redraw();
}
}
_ => {}
}
})
.unwrap()
});
info!("Shutting down {}!", self.title);
}
}