comet/res/shaders/glitch.wgsl

89 lines
3.5 KiB
WebGPU Shading Language

// Vertex shader
struct CameraUniform {
view_proj: mat4x4<f32>,
};
@group(1) @binding(0) // 1.
var<uniform> camera: CameraUniform;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) color: vec4<f32>,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) color: vec4<f32>,
}
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.color = model.color;
out.clip_position = camera.view_proj * vec4<f32>(model.position, 1.0);
return out;
}
@group(0) @binding(0)
var t_diffuse: texture_2d<f32>; // Diffuse texture
@group(0) @binding(1)
var s_diffuse: sampler; // Sampler for the texture
// A simple pseudo-random number generator (using fragment coordinates)
fn rand2D(p: vec2<f32>) -> f32 {
let s = sin(dot(p, vec2<f32>(12.9898, 78.233))); // Pseudorandom calculation
return fract(s * 43758.5453); // Return value between 0 and 1
}
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
// Sample the texture using the input texture coordinates
var texColor: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
// Random horizontal displacement for glitching effect
let glitchStrength = 0.03; // How far the texture will "glitch"
let glitchAmount = rand2D(in.tex_coords * 100.0); // Use a different scale for more variation
var displacedUV = in.tex_coords + vec2<f32>(glitchAmount * glitchStrength, 0.0);
// Sample the texture at the displaced position
texColor = textureSample(t_diffuse, s_diffuse, displacedUV);
// Apply random color flickering
let colorFlickerAmount = rand2D(in.tex_coords * 50.0); // More frequency for faster flickering
texColor.r *= mix(0.7, 1.3, colorFlickerAmount); // Randomly adjust red channel brightness
texColor.g *= mix(0.7, 1.3, colorFlickerAmount); // Randomly adjust green channel brightness
texColor.b *= mix(0.7, 1.3, colorFlickerAmount); // Randomly adjust blue channel brightness
// Occasionally "flicker" the texture to simulate complete signal loss
let flickerChance = rand2D(in.tex_coords * 200.0); // Different scale for randomness
if (flickerChance < 0.05) { // 5% chance to completely "flicker" out
texColor.r = 0.0; // Turn red channel to black
texColor.g = 0.0; // Turn green channel to black
texColor.b = 0.0; // Turn blue channel to black
}
// Apply random horizontal offset to simulate screen tearing
let tearEffect = rand2D(in.tex_coords * 25.0); // Vary this value for different effects
if (tearEffect < 0.15) {
texColor.r = 1.0; // Simulate red "tear"
texColor.g = 0.0; // No green in the tear
texColor.b = 0.0; // No blue in the tear
} else if (tearEffect < 0.3) {
texColor.r = 0.0; // No red in the tear
texColor.g = 1.0; // Simulate green "tear"
texColor.b = 0.0; // No blue in the tear
}
// Optionally, you can add a "flickering noise" layer for additional effect
let noiseAmount = rand2D(in.tex_coords * 500.0); // Highly random noise for flickering
texColor.r += noiseAmount * 0.1; // Add small amount of random noise to red channel
texColor.g += noiseAmount * 0.1; // Add small amount of random noise to green channel
texColor.b += noiseAmount * 0.1; // Add small amount of random noise to blue channel
// Return the altered texture color
return texColor;
}