use std::iter; use std::path::PathBuf; use std::sync::Arc; use std::time::Instant; use wgpu::{Color, ShaderModule}; use wgpu::naga::ShaderStage; use wgpu::util::DeviceExt; use winit::dpi::PhysicalSize; use winit::window::Window; use comet_colors::LinearRgba; use comet_ecs::{Camera, Camera2D, Component, Position2D, Render, Render2D, Transform2D, World}; use comet_log::{debug, info}; use comet_math::{Point3, Vec2, Vec3}; use comet_resources::{texture, graphic_resource_manager::GraphicResorceManager, Texture, Vertex}; use comet_resources::texture_atlas::TextureRegion; use comet_structs::ComponentSet; use crate::camera::{Camera as OldCam, CameraUniform}; use crate::render_pass::RenderPassInfo; use crate::renderer::Renderer; pub struct Renderer2D<'a> { surface: wgpu::Surface<'a>, device: wgpu::Device, queue: wgpu::Queue, config: wgpu::SurfaceConfiguration, size: PhysicalSize, render_pipeline_layout: wgpu::PipelineLayout, pipelines: Vec, render_pass: Vec, last_frame_time: Instant, deltatime: f32, vertex_buffer: wgpu::Buffer, vertex_data: Vec, index_buffer: wgpu::Buffer, index_data: Vec, num_indices: u32, clear_color: Color, diffuse_texture: Texture, diffuse_bind_group: wgpu::BindGroup, graphic_resource_manager: GraphicResorceManager, camera: OldCam, camera_uniform: CameraUniform, camera_buffer: wgpu::Buffer, camera_bind_group: wgpu::BindGroup, } impl<'a> Renderer2D<'a> { pub async fn new(window: Arc, clear_color: Option) -> Renderer2D<'a> { let vertex_data: Vec = vec![]; let index_data: Vec = vec![]; let size = PhysicalSize::::new(1920, 1080); let instance = wgpu::Instance::new(wgpu::InstanceDescriptor { backends: wgpu::Backends::PRIMARY, ..Default::default() }); let surface = instance.create_surface(window).unwrap(); let adapter = instance .request_adapter(&wgpu::RequestAdapterOptions { power_preference: wgpu::PowerPreference::default(), compatible_surface: Some(&surface), force_fallback_adapter: false, }) .await .unwrap(); let (device, queue) = adapter .request_device( &wgpu::DeviceDescriptor { label: None, required_features: wgpu::Features::empty(), required_limits: wgpu::Limits::default(), memory_hints: Default::default(), }, None, // Trace path ) .await .unwrap(); let surface_caps = surface.get_capabilities(&adapter); let surface_format = surface_caps .formats .iter() .copied() .find(|f| f.is_srgb()) .unwrap_or(surface_caps.formats[0]); let config = wgpu::SurfaceConfiguration { usage: wgpu::TextureUsages::RENDER_ATTACHMENT, format: surface_format, width: size.width, height: size.height, present_mode: surface_caps.present_modes[0], alpha_mode: surface_caps.alpha_modes[0], view_formats: vec![], desired_maximum_frame_latency: 2, }; let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()), }); let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Vertex Buffer"), contents: bytemuck::cast_slice(&vertex_data), usage: wgpu::BufferUsages::VERTEX, }); let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Index Buffer"), contents: bytemuck::cast_slice(&index_data), usage: wgpu::BufferUsages::INDEX }); let num_indices = index_data.len() as u32; let graphic_resource_manager = GraphicResorceManager::new(); let diffuse_bytes = include_bytes!(r"../../../resources/textures/comet_icon.png"); let diffuse_texture = Texture::from_bytes(&device, &queue, diffuse_bytes, "comet_icon.png", false).unwrap(); let texture_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&diffuse_texture.view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler), }, ], label: Some("diffuse_bind_group"), }); let camera = OldCam::new(1.0, Vec2::new(2.0, 2.0), Vec3::new(0.0, 0.0, 0.0)); let mut camera_uniform = CameraUniform::new(); camera_uniform.update_view_proj(&camera); let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera Buffer"), contents: bytemuck::cast_slice(&[camera_uniform]), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); let camera_bind_group_layout = device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: camera_buffer.as_entire_binding(), }], label: Some("camera_bind_group"), }); let render_pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[ &texture_bind_group_layout, &camera_bind_group_layout, ], push_constant_ranges: &[], }); let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_main", buffers: &[Vertex::desc()], compilation_options: Default::default(), }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::SrcAlpha, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, alpha: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::One, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, }), write_mask: wgpu::ColorWrites::ALL, })], compilation_options: Default::default(), }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), polygon_mode: wgpu::PolygonMode::Fill, unclipped_depth: false, conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, cache: None, }); let mut pipelines = Vec::new(); pipelines.push(render_pipeline); let clear_color = match clear_color { Some(color) => color.to_wgpu(), None => Color { r: 0.1, g: 0.2, b: 0.3, a: 1.0, } }; Self { surface, device, queue, config, size, render_pipeline_layout, pipelines, render_pass: vec![], last_frame_time: Instant::now(), deltatime: 0.0, vertex_buffer, vertex_data, index_buffer, index_data, num_indices, clear_color, diffuse_texture, diffuse_bind_group, graphic_resource_manager, camera, camera_buffer, camera_uniform, camera_bind_group } } pub fn dt(&self) -> f32 { self.deltatime } pub fn config(&self) -> &wgpu::SurfaceConfiguration { &self.config } pub fn size(&self) -> PhysicalSize { self.size } pub fn resize(&mut self, new_size: PhysicalSize) { if new_size.width > 0 && new_size.height > 0 { //self.projection.resize(new_size.width, new_size.height); self.size = new_size; self.config.width = new_size.width; self.config.height = new_size.height; self.surface.configure(&self.device, &self.config); } } pub fn add_render_pass(&mut self, render_pass_info: RenderPassInfo) { self.render_pass.push(render_pass_info); } /// A function that loads a shader from the resources/shaders folder given the full name of the shader file. pub fn load_shader(&mut self, shader_stage: Option, file_name: &str) { self.graphic_resource_manager.load_shader(shader_stage, ((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + file_name.clone()).as_str(), &self.device).unwrap(); info!("Shader ({}) loaded successfully", file_name); } pub fn load_shaders(&mut self, shader_stages: Vec>, file_names: Vec<&str>) { for (i, file_name) in file_names.iter().enumerate() { self.load_shader(shader_stages[i].clone(), file_name); info!("Shader ({}) loaded successfully", file_name); } } /// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded. pub fn apply_shader(&mut self, shader: &str) { let shader_module = self.graphic_resource_manager.get_shader( ((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + shader).as_str()).unwrap(); let texture_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let camera_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let render_pipeline_layout = self.device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[ &texture_bind_group_layout, &camera_bind_group_layout, ], push_constant_ranges: &[], }); self.pipelines[0] = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader_module, entry_point: "vs_main", buffers: &[Vertex::desc()], compilation_options: Default::default(), }, fragment: Some(wgpu::FragmentState { module: &shader_module, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: self.config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::SrcAlpha, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, alpha: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::One, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, }), write_mask: wgpu::ColorWrites::ALL, })], compilation_options: Default::default(), }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), polygon_mode: wgpu::PolygonMode::Fill, unclipped_depth: false, conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, cache: None, }); info!("Applied shader ({})!", shader); } /// A function to revert back to the base shader of the `Renderer2D` pub fn apply_base_shader(&mut self) { let shader = self.device.create_shader_module(wgpu::ShaderModuleDescriptor { label: Some("Shader"), source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()), }); let texture_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let camera_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let render_pipeline_layout = self.device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor { label: Some("Render Pipeline Layout"), bind_group_layouts: &[ &texture_bind_group_layout, &camera_bind_group_layout, ], push_constant_ranges: &[], }); self.pipelines[0] = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor { label: Some("Render Pipeline"), layout: Some(&render_pipeline_layout), vertex: wgpu::VertexState { module: &shader, entry_point: "vs_main", buffers: &[Vertex::desc()], compilation_options: Default::default(), }, fragment: Some(wgpu::FragmentState { module: &shader, entry_point: "fs_main", targets: &[Some(wgpu::ColorTargetState { format: self.config.format, blend: Some(wgpu::BlendState { color: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::SrcAlpha, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, alpha: wgpu::BlendComponent { src_factor: wgpu::BlendFactor::One, dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha, operation: wgpu::BlendOperation::Add, }, }), write_mask: wgpu::ColorWrites::ALL, })], compilation_options: Default::default(), }), primitive: wgpu::PrimitiveState { topology: wgpu::PrimitiveTopology::TriangleList, strip_index_format: None, front_face: wgpu::FrontFace::Ccw, cull_mode: Some(wgpu::Face::Back), polygon_mode: wgpu::PolygonMode::Fill, unclipped_depth: false, conservative: false, }, depth_stencil: None, multisample: wgpu::MultisampleState { count: 1, mask: !0, alpha_to_coverage_enabled: false, }, multiview: None, cache: None, }); info!("Applied base shader!"); } /// An interface for getting the location of the texture in the texture atlas. pub fn get_texture_region(&self, texture_path: String) -> &TextureRegion { assert!(self.graphic_resource_manager.texture_atlas().textures().contains_key(&texture_path), "Texture not found in atlas"); self.graphic_resource_manager.texture_atlas().textures().get(&texture_path).unwrap() } fn create_rectangle(&self, width: f32, height: f32) -> Vec { let (bound_x, bound_y) = ((width/ self.config.width as f32) * 0.5, (height/ self.config.height as f32) * 0.5); vec![ Vertex :: new ( [-bound_x, bound_y, 0.0], [0.0, 0.0], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [-bound_x, -bound_y, 0.0], [0.0, 1.0], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [ bound_x, -bound_y, 0.0], [1.0, 1.0], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [ bound_x, bound_y, 0.0], [1.0, 0.0], [0.0, 0.0, 0.0, 0.0] ) ] } /// A function that allows you to set the texture atlas with a list of paths to the textures. /// The old texture atlas will be replaced with the new one. pub fn set_texture_atlas(&mut self, paths: Vec) { self.graphic_resource_manager.create_texture_atlas(paths); self.diffuse_texture = Texture::from_image(&self.device, &self.queue, self.graphic_resource_manager.texture_atlas().atlas(), None, false).unwrap(); let texture_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[ wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Texture { multisampled: false, view_dimension: wgpu::TextureViewDimension::D2, sample_type: wgpu::TextureSampleType::Float { filterable: true }, }, count: None, }, wgpu::BindGroupLayoutEntry { binding: 1, visibility: wgpu::ShaderStages::FRAGMENT, ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering), count: None, }, ], label: Some("texture_bind_group_layout"), }); let diffuse_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &texture_bind_group_layout, entries: &[ wgpu::BindGroupEntry { binding: 0, resource: wgpu::BindingResource::TextureView(&self.diffuse_texture.view), }, wgpu::BindGroupEntry { binding: 1, resource: wgpu::BindingResource::Sampler(&self.diffuse_texture.sampler), }, ], label: Some("diffuse_bind_group"), }); self.diffuse_bind_group = diffuse_bind_group; } fn get_project_root() -> std::io::Result { let path = std::env::current_dir()?; let mut path_ancestors = path.as_path().ancestors(); while let Some(p) = path_ancestors.next() { let has_cargo = std::fs::read_dir(p)? .into_iter() .any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock")); if has_cargo { return Ok(PathBuf::from(p)) } } Err(std::io::Error::new(std::io::ErrorKind::NotFound, "Ran out of places to find Cargo.toml")) } /// A function that takes all of the textures inside of the resources/textures folder and creates a texture atlas from them. pub fn initialize_atlas(&mut self) { let texture_path = "resources/textures/".to_string(); let mut paths: Vec = Vec::new(); for path in std::fs::read_dir(Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "/resources/textures").unwrap() { paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap()); } self.set_texture_atlas(paths); } /// A function that clears the buffers and sets the vertex and index buffer of the `Renderer2D` with the given data. fn set_buffers(&mut self, new_vertex_buffer: Vec, new_index_buffer: Vec) { match new_vertex_buffer == self.vertex_data { true => return, false => { self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Updated Vertex Buffer"), contents: bytemuck::cast_slice(&new_vertex_buffer), usage: wgpu::BufferUsages::VERTEX, }); self.vertex_data = new_vertex_buffer; } } match new_index_buffer == self.index_data { true => return, false => { self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Updated Index Buffer"), contents: bytemuck::cast_slice(&new_index_buffer), usage: wgpu::BufferUsages::INDEX, }); self.index_data = new_index_buffer.clone(); self.num_indices = new_index_buffer.len() as u32; } } } /// A function that adds data to the already existing vertex and index buffers of the `Renderer2D`. fn push_to_buffers(&mut self, new_vertex_buffer: &mut Vec, new_index_buffer: &mut Vec) { self.vertex_data.append(new_vertex_buffer); self.index_data.append(new_index_buffer); self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Updated Vertex Buffer"), contents: bytemuck::cast_slice(&self.vertex_data), usage: wgpu::BufferUsages::VERTEX, }); self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Updated Index Buffer"), contents: bytemuck::cast_slice(&self.index_data), usage: wgpu::BufferUsages::INDEX, }); self.num_indices = self.index_data.len() as u32; } /// A function that clears the vertex and index buffers of the `Renderer2D`. fn clear_buffers(&mut self) { self.vertex_data = vec![]; self.index_data = vec![]; self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Updated Vertex Buffer"), contents: bytemuck::cast_slice(&self.vertex_data), usage: wgpu::BufferUsages::VERTEX, }); self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Updated Index Buffer"), contents: bytemuck::cast_slice(&self.index_data), usage: wgpu::BufferUsages::INDEX, }); self.num_indices = self.index_data.len() as u32; } /// A function to just draw a textured quad at a given position. pub fn draw_texture_at(&mut self, texture_path: String, position: Point3) { let region = self.graphic_resource_manager.texture_locations().get(&texture_path).unwrap(); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32/ self.config.width as f32) * 0.5, (dim_y as f32/ self.config.height as f32) * 0.5); let vertices: &mut Vec = &mut vec![ Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0] ) , Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0] ) ]; let buffer_size = self.vertex_data.len() as u16; let indices: &mut Vec = &mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]; self.push_to_buffers(vertices, indices) } /// A function to draw text at a given position. pub fn draw_text_at(&mut self, text: &str, position: Point3) { todo!() } fn find_priority_camera(&self, cameras: Vec) -> usize { let mut priority = 0; let mut position = 0; for (i, camera) in cameras.iter().enumerate() { if camera.priority() < priority { priority = camera.priority(); position = i; } } position } fn setup_camera<'b>(&mut self, cameras: Vec, world: &'b World) -> (&'b Position2D, &'b Camera2D){ let cam = cameras.get( self.find_priority_camera( cameras.iter().map(|e| *world.get_component::(*e).unwrap() ).collect::>()) ).unwrap(); let camera_component = world.get_component::(*cam).unwrap(); let camera_position = world.get_component::(*cam).unwrap().position(); let camera = OldCam::new( camera_component.zoom(), camera_component.dimensions(), Vec3::new(camera_position.as_vec().x(), camera_position.as_vec().y(), 0.0)); let mut camera_uniform = CameraUniform::new(); camera_uniform.update_view_proj(&camera); let camera_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor { label: Some("Camera Buffer"), contents: bytemuck::cast_slice(&[camera_uniform]), usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST, }); let camera_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor { entries: &[wgpu::BindGroupLayoutEntry { binding: 0, visibility: wgpu::ShaderStages::VERTEX, ty: wgpu::BindingType::Buffer { ty: wgpu::BufferBindingType::Uniform, has_dynamic_offset: false, min_binding_size: None, }, count: None, }], label: Some("camera_bind_group_layout"), }); let camera_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor { layout: &camera_bind_group_layout, entries: &[wgpu::BindGroupEntry { binding: 0, resource: camera_buffer.as_entire_binding(), }], label: Some("camera_bind_group"), }); self.camera = camera; self.camera_buffer = camera_buffer; self.camera_uniform = camera_uniform; self.camera_bind_group = camera_bind_group; (camera_position, camera_component) } /// A function to automatically render all the entities of the `World` struct. /// The entities must have the `Render2D` and `Transform2D` components to be rendered as well as set visible. pub fn render_scene_2d(&mut self, world: &World) { let entities = world.get_entities_with(ComponentSet::from_ids(vec![Render2D::type_id()])); let mut vertex_buffer: Vec = Vec::new(); let mut index_buffer: Vec = Vec::new(); for entity in entities { let renderer_component = world.get_component::(entity).unwrap(); let transform_component = world.get_component::(entity).unwrap(); if renderer_component.is_visible() { //renderer.draw_texture_at(renderer_component.get_texture(), Point3::new(transform_component.position().x(), transform_component.position().y(), 0.0)); let mut position = transform_component.position().clone(); position.set_x(position.x() / self.config().width as f32); position.set_y(position.y() / self.config().height as f32); let region = self.get_texture_region(renderer_component.get_texture().to_string()); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32/ self.config().width as f32) * 0.5, (dim_y as f32/ self.config().height as f32) * 0.5); let buffer_size = vertex_buffer.len() as u16; vertex_buffer.append(&mut vec![ Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0] ), Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0] ) , Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0] ) ]); index_buffer.append(&mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]); } } self.set_buffers(vertex_buffer, index_buffer); } /*pub fn render_scene_2d(&mut self, world: &World) { let cameras = world.get_entities_with(ComponentSet::from_ids(vec![Camera2D::type_id()])); if cameras == vec![] { return; } let (camera_position, camera_component) = self.setup_camera(cameras, world); let mut visible_entities: Vec = vec![]; for entity in world.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Render2D::type_id()])) { let entity_id = entity as usize; if !camera_component .in_view_frustum(*camera_position, *world.get_component::(entity_id).unwrap().position()) { continue; } match world.get_component::(entity_id) { Some(render) => { if !render.is_visible() { continue; } if let Some(cam) = world.get_component::(entity_id) { continue; } visible_entities.push(entity_id); } None => { continue; } } } let mut vertex_buffer: Vec = Vec::new(); let mut index_buffer: Vec = Vec::new(); //debug!("Visible entities: {:?}", visible_entities); for entity in visible_entities { let renderer_component = world.get_component::(entity); let transform_component = world.get_component::(entity); if renderer_component.unwrap().is_visible() { let mut position = transform_component.unwrap().position().clone(); position.set_x(position.x() / self.config().width as f32); position.set_y(position.y() / self.config().height as f32); let region = self.get_texture_region(renderer_component.unwrap().get_texture().to_string()); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32 / self.config().width as f32) * 0.5, (dim_y as f32 / self.config().height as f32) * 0.5); let buffer_size = vertex_buffer.len() as u16; vertex_buffer.append(&mut vec![ Vertex::new([-bound_x + position.x(), bound_y + position.y(), 0.0], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([bound_x + position.x(), bound_y + position.y(), 0.0], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0]) ]); index_buffer.append(&mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]); } } self.set_buffers(vertex_buffer, index_buffer); }*/ fn sort_entities_by_position(&self, entity_data: Vec<(usize, Position2D)>) -> Vec { let mut sorted_entities: Vec = vec![]; let mut entity_data = entity_data.clone(); entity_data.sort_by(|a, b| a.1.x().partial_cmp(&b.1.x()).unwrap()); for (i, _) in entity_data { sorted_entities.push(i); } sorted_entities } /// A function to render the screen from top to bottom. /// Generally useful in top-down games to render trees in front of players for example. pub fn render_layered_scene_2d(&mut self, world: &World) { let cameras = world.get_entities_with(ComponentSet::from_ids(vec![Camera2D::type_id()])); if cameras == vec![] { return; } let (camera_position, camera_component) = self.setup_camera(cameras, world); let mut visible_entities: Vec = vec![]; for entity in world.get_entities_with(ComponentSet::from_ids(vec![Transform2D::type_id(), Render2D::type_id()])) { let entity_id = entity as usize; if !camera_component .in_view_frustum(*camera_position, *world.get_component::(entity_id).unwrap().position()) { continue; } match world.get_component::(entity_id) { Some(render) => { if !render.is_visible() { continue; } if let Some(cam) = world.get_component::(entity_id) { continue; } visible_entities.push(entity_id); } None => { continue; } } } let mut entity_data = { let mut data: Vec<(usize, Position2D)> = vec![]; for entity in visible_entities { data.push((entity, *world.get_component::(entity).unwrap().position())); } data }; let visible_entities = self.sort_entities_by_position(entity_data); let mut vertex_buffer: Vec = Vec::new(); let mut index_buffer: Vec = Vec::new(); for entity in visible_entities { let renderer_component = world.get_component::(entity); let transform_component = world.get_component::(entity); if renderer_component.unwrap().is_visible() { let mut position = transform_component.unwrap().position().clone(); position.set_x(position.x() / self.config().width as f32); position.set_y(position.y() / self.config().height as f32); let region = self.get_texture_region(renderer_component.unwrap().get_texture().to_string()); let (dim_x, dim_y) = region.dimensions(); let (bound_x, bound_y) = ((dim_x as f32 / self.config().width as f32) * 0.5, (dim_y as f32 / self.config().height as f32) * 0.5); let buffer_size = vertex_buffer.len() as u16; vertex_buffer.append(&mut vec![ Vertex::new([-bound_x + position.x(), bound_y + position.y(), 0.0], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0]), Vertex::new([bound_x + position.x(), bound_y + position.y(), 0.0], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0]) ]); index_buffer.append(&mut vec![ 0 + buffer_size, 1 + buffer_size, 3 + buffer_size, 1 + buffer_size, 2 + buffer_size, 3 + buffer_size ]); } } self.set_buffers(vertex_buffer, index_buffer); } pub fn update(&mut self) -> f32 { let now = Instant::now(); self.deltatime = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds self.last_frame_time = now; self.deltatime } pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> { let output = self.surface.get_current_texture()?; let view = output .texture .create_view(&wgpu::TextureViewDescriptor::default()); let mut encoder = self .device .create_command_encoder(&wgpu::CommandEncoderDescriptor { label: Some("Render Encoder"), }); for pipeline in &self.pipelines { let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor { label: Some("Render Pass"), color_attachments: &[Some(wgpu::RenderPassColorAttachment { view: &view, resolve_target: None, ops: wgpu::Operations { load: wgpu::LoadOp::Clear(self.clear_color), store: wgpu::StoreOp::Store, }, })], depth_stencil_attachment: None, occlusion_query_set: None, timestamp_writes: None, }); render_pass.set_pipeline(pipeline); render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]); render_pass.set_bind_group(1, &self.camera_bind_group, &[]); render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..)); render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16); render_pass.draw_indexed(0..self.num_indices, 0, 0..1); } self.queue.submit(iter::once(encoder.finish())); output.present(); Ok(()) } } impl<'a> Renderer for Renderer2D<'a> { async fn new(window: Arc, clear_color: Option) -> Renderer2D<'a> { Self::new(window, clear_color).await } fn size(&self) -> PhysicalSize { self.size() } fn resize(&mut self, new_size: winit::dpi::PhysicalSize) { self.resize(new_size) } fn update(&mut self) -> f32 { self.update() } fn render(&mut self) -> Result<(), wgpu::SurfaceError> { self.render() } }