refactor(math): moved the common permutation function outside the impls

This commit is contained in:
lisk77 2025-08-03 02:06:50 +02:00
parent b290f98b11
commit ae9918c9b9

View file

@ -1,8 +1,26 @@
use image::{DynamicImage, GenericImage, GenericImageView, Rgba};
use rand::Rng;
use comet_log::debug;
use crate::v2;
use crate::lerp; use crate::lerp;
use image::{DynamicImage, GenericImage, Rgba};
use rand::Rng;
fn permutation(seed: i32, value: i32) -> i32 {
const P: [i32; 256] = [
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30,
69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94,
252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171,
168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60,
211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1,
216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86,
164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118,
126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170,
213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39,
253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34,
242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49,
192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180,
];
P[((value ^ seed) & 255) as usize]
}
// TODO // TODO
// Make noise struct keep their generated noise // Make noise struct keep their generated noise
@ -10,372 +28,348 @@ use crate::lerp;
// Use noise trait to let the generated noise be outputed in different ways like images or Vec<f32> // Use noise trait to let the generated noise be outputed in different ways like images or Vec<f32>
pub trait NoiseGenerator { pub trait NoiseGenerator {
fn generate(&self) -> Vec<f32>; fn generate(&self) -> Vec<f32>;
fn generate_image(&self) -> DynamicImage; fn generate_image(&self) -> DynamicImage;
} }
pub struct WhiteNoise { pub struct WhiteNoise {
size: (usize, usize), size: (usize, usize),
} }
impl WhiteNoise { impl WhiteNoise {
/// Creates a white noise generator ideal for multiple uses. /// Creates a white noise generator ideal for multiple uses.
pub fn new(width: usize, height: usize) -> Self { pub fn new(width: usize, height: usize) -> Self {
Self { Self {
size: (width, height) size: (width, height),
} }
} }
pub fn set_width(&mut self, width: usize) { pub fn set_width(&mut self, width: usize) {
self.size.0 = width; self.size.0 = width;
} }
pub fn set_height(&mut self, height: usize) { pub fn set_height(&mut self, height: usize) {
self.size.1 = height; self.size.1 = height;
} }
pub fn set_size(&mut self, width: usize, height: usize) { pub fn set_size(&mut self, width: usize, height: usize) {
self.size = (width, height); self.size = (width, height);
} }
/// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`. /// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`.
pub fn generate(size: (usize, usize)) -> Vec<f32> { pub fn generate(size: (usize, usize)) -> Vec<f32> {
let mut rng = rand::rng(); let mut rng = rand::rng();
let mut noise = Vec::with_capacity(size.0 * size.1); let mut noise = Vec::with_capacity(size.0 * size.1);
for _ in 0..size.0 * size.1 { for _ in 0..size.0 * size.1 {
noise.push(rng.random_range(0.0..1.0)); noise.push(rng.random_range(0.0..1.0));
} }
noise noise
} }
/// Generates white noise as a `DynamicImage`. /// Generates white noise as a `DynamicImage`.
pub fn generate_image(size: (usize, usize)) -> DynamicImage { pub fn generate_image(size: (usize, usize)) -> DynamicImage {
let mut rng = rand::rng(); let mut rng = rand::rng();
let mut image = DynamicImage::new_rgb8(size.0 as u32, size.1 as u32); let mut image = DynamicImage::new_rgb8(size.0 as u32, size.1 as u32);
for y in 0..size.1 { for y in 0..size.1 {
for x in 0..size.0 { for x in 0..size.0 {
let value = (rng.random_range(0.0..1.0) * 255.0) as u8; let value = (rng.random_range(0.0..1.0) * 255.0) as u8;
image.put_pixel(x as u32, y as u32, Rgba([value, value, value, 255])); image.put_pixel(x as u32, y as u32, Rgba([value, value, value, 255]));
} }
} }
image image
} }
} }
impl NoiseGenerator for WhiteNoise { impl NoiseGenerator for WhiteNoise {
/// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`. /// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`.
fn generate(&self) -> Vec<f32> { fn generate(&self) -> Vec<f32> {
let mut rng = rand::rng(); let mut rng = rand::rng();
let mut noise = Vec::with_capacity(self.size.0 * self.size.1); let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
for _ in 0..self.size.0 * self.size.1 { for _ in 0..self.size.0 * self.size.1 {
noise.push(rng.random_range(0.0..1.0)); noise.push(rng.random_range(0.0..1.0));
} }
noise noise
} }
/// Generates white noise as a `DynamicImage`. /// Generates white noise as a `DynamicImage`.
fn generate_image(&self) -> DynamicImage { fn generate_image(&self) -> DynamicImage {
let mut rng = rand::rng(); let mut rng = rand::rng();
let mut image = DynamicImage::new_rgb8(self.size.0 as u32, self.size.1 as u32); let mut image = DynamicImage::new_rgb8(self.size.0 as u32, self.size.1 as u32);
for y in 0..self.size.1 { for y in 0..self.size.1 {
for x in 0..self.size.0 { for x in 0..self.size.0 {
let value = (rng.random_range(0.0..1.0) * 255.0) as u8; let value = (rng.random_range(0.0..1.0) * 255.0) as u8;
image.put_pixel(x as u32, y as u32, Rgba([value, value, value, 255])); image.put_pixel(x as u32, y as u32, Rgba([value, value, value, 255]));
} }
} }
image image
} }
} }
pub struct PerlinNoise { pub struct PerlinNoise {
size: (usize, usize), size: (usize, usize),
frequency: f64, frequency: f64,
seed: u32, seed: u32,
} }
impl PerlinNoise { impl PerlinNoise {
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self { pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
Self { Self {
size: (width, height), size: (width, height),
frequency, frequency,
seed, seed,
} }
} }
pub fn set_width(&mut self, width: usize) { pub fn set_width(&mut self, width: usize) {
self.size.0 = width; self.size.0 = width;
} }
pub fn set_height(&mut self, height: usize) { pub fn set_height(&mut self, height: usize) {
self.size.1 = height; self.size.1 = height;
} }
pub fn set_size(&mut self, width: usize, height: usize) { pub fn set_size(&mut self, width: usize, height: usize) {
self.size = (width, height); self.size = (width, height);
} }
pub fn set_frequency(&mut self, frequency: f64) { pub fn set_frequency(&mut self, frequency: f64) {
self.frequency = frequency; self.frequency = frequency;
} }
pub fn set_seed(&mut self, seed: u32) { pub fn set_seed(&mut self, seed: u32) {
self.seed = seed; self.seed = seed;
} }
/// Generates Perlin noise as a `Vec<f32>`. Size of the vector is `width * height`. /// Generates Perlin noise as a `Vec<f32>`. Size of the vector is `width * height`.
pub fn generate(&self) -> Vec<f32> { pub fn generate(&self) -> Vec<f32> {
let mut noise = Vec::with_capacity(self.size.0 * self.size.1); let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
for y in 0..self.size.1 { for y in 0..self.size.1 {
for x in 0..self.size.0 { for x in 0..self.size.0 {
let nx = x as f64 / self.size.0 as f64; let nx = x as f64 / self.size.0 as f64;
let ny = y as f64 / self.size.1 as f64; let ny = y as f64 / self.size.1 as f64;
let value = self.perlin(nx * self.frequency, ny * self.frequency); let value = self.perlin(nx * self.frequency, ny * self.frequency);
noise.push((value+1.0) * 0.5); noise.push((value + 1.0) * 0.5);
} }
} }
noise noise
} }
/// Generates Perlin noise with multiple octaves as a `Vec<f32>`. /// Generates Perlin noise with multiple octaves as a `Vec<f32>`.
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> { pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
let mut noise = vec![0.0; self.size.0 * self.size.1]; let mut noise = vec![0.0; self.size.0 * self.size.1];
let mut amplitude = 1.0; let mut amplitude = 1.0;
let mut frequency = self.frequency; let mut frequency = self.frequency;
let mut max_value = 0.0; // Used for normalization let mut max_value = 0.0; // Used for normalization
for _ in 0..octaves { for _ in 0..octaves {
for y in 0..self.size.1 { for y in 0..self.size.1 {
for x in 0..self.size.0 { for x in 0..self.size.0 {
let nx = x as f64 / self.size.0 as f64; let nx = x as f64 / self.size.0 as f64;
let ny = y as f64 / self.size.1 as f64; let ny = y as f64 / self.size.1 as f64;
noise[y * self.size.0 + x] += self.perlin(nx * frequency, ny * frequency) as f32 * amplitude as f32; noise[y * self.size.0 + x] +=
} self.perlin(nx * frequency, ny * frequency) as f32 * amplitude as f32;
} }
max_value += amplitude; }
amplitude *= persistence; // Reduce amplitude for next octave max_value += amplitude;
frequency *= 2.0; // Double frequency for next octave amplitude *= persistence; // Reduce amplitude for next octave
} frequency *= 2.0; // Double frequency for next octave
}
// Normalize the noise to the range [0, 1] // Normalize the noise to the range [0, 1]
noise.iter_mut().for_each(|value| *value /= max_value as f32); noise
.iter_mut()
.for_each(|value| *value /= max_value as f32);
noise.iter_mut().for_each(|value| *value = (*value + 1.0) * 0.5); noise
.iter_mut()
.for_each(|value| *value = (*value + 1.0) * 0.5);
noise noise
} }
/// A raw Perlin noise function implementation.
fn perlin(&self, x: f64, y: f64) -> f32 {
let xi = x.floor() as i32 & 255;
let yi = y.floor() as i32 & 255;
/// A raw Perlin noise function implementation. let xf = x - x.floor();
fn perlin(&self, x: f64, y: f64) -> f32 { let yf = y - y.floor();
let xi = x.floor() as i32 & 255;
let yi = y.floor() as i32 & 255;
let xf = x - x.floor(); let u = Self::fade(xf);
let yf = y - y.floor(); let v = Self::fade(yf);
let u = Self::fade(xf); let a = permutation(self.seed as i32, xi) + yi;
let v = Self::fade(yf); let b = permutation(self.seed as i32, xi + 1) + yi;
let a = self.permutation(xi) + yi; let aa = permutation(self.seed as i32, a);
let b = self.permutation(xi + 1) + yi; let ab = permutation(self.seed as i32, a + 1);
let ba = permutation(self.seed as i32, b);
let bb = permutation(self.seed as i32, b + 1);
let aa = self.permutation(a); let x1 = lerp(
let ab = self.permutation(a + 1); u as f32,
let ba = self.permutation(b); Self::grad(permutation(self.seed as i32, aa), xf, yf) as f32,
let bb = self.permutation(b + 1); Self::grad(permutation(self.seed as i32, ba), xf - 1.0, yf) as f32,
);
let x2 = lerp(
u as f32,
Self::grad(
permutation(self.seed as i32, permutation(self.seed as i32, ab)),
xf,
yf - 1.0,
) as f32,
Self::grad(
permutation(self.seed as i32, permutation(self.seed as i32, bb)),
xf - 1.0,
yf - 1.0,
) as f32,
);
let x1 = lerp(u as f32, Self::grad(self.permutation(aa), xf, yf) as f32, Self::grad(self.permutation(ba), xf - 1.0, yf) as f32); lerp(v as f32, x1, x2)
let x2 = lerp(u as f32, Self::grad(self.permutation(ab), xf, yf - 1.0) as f32, Self::grad(self.permutation(bb), xf - 1.0, yf - 1.0) as f32); }
lerp(v as f32, x1, x2) fn fade(t: f64) -> f64 {
} t * t * t * (t * (t * 6.0 - 15.0) + 10.0)
}
fn fade(t: f64) -> f64 { fn grad(hash: i32, x: f64, y: f64) -> f64 {
t * t * t * (t * (t * 6.0 - 15.0) + 10.0) let h = hash & 3;
} let u = if h & 2 == 0 { x } else { -x };
let v = if h & 1 == 0 { y } else { -y };
fn lerp(t: f64, a: f64, b: f64) -> f64 { u + v
a + t * (b - a) }
}
fn grad(hash: i32, x: f64, y: f64) -> f64 {
let h = hash & 3;
let u = if h & 2 == 0 { x } else { -x };
let v = if h & 1 == 0 { y } else { -y };
u + v
}
fn permutation(&self, value: i32) -> i32 {
const P: [i32; 256] = [
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240,
21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,
237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206,
59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153,
101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218,
246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
];
P[((value ^ self.seed as i32) & 255) as usize]
}
} }
pub struct ValueNoise { pub struct ValueNoise {
size: (usize, usize), size: (usize, usize),
frequency: f64, frequency: f64,
seed: u32, seed: u32,
} }
impl ValueNoise { impl ValueNoise {
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self { pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
Self { Self {
size: (width, height), size: (width, height),
frequency, frequency,
seed, seed,
} }
} }
fn permutation(&self, value: i32) -> i32 { fn noise(&self, p: (f32, f32)) -> f32 {
const P: [i32; 256] = [ let i = (p.0.floor() as i32, p.1.floor() as i32);
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, let f = (p.0.fract(), p.1.fract());
21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,
237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206,
59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153,
101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218,
246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
];
P[((value ^ self.seed as i32) & 255) as usize] // cubic interpolant
} let u = (f.0 * f.0 * (3.0 - 2.0 * f.0), f.1 * f.1 * (3.0 - 2.0 * f.1));
fn noise(&self, p: (f32, f32)) -> f32 { let a = permutation(self.seed as i32, i.0) + i.1;
let i = (p.0.floor() as i32, p.1.floor() as i32); let b = permutation(self.seed as i32, i.0 + 1) + i.1;
let f = (p.0.fract(), p.1.fract());
// cubic interpolant lerp(
let u = ( lerp(
f.0 * f.0 * (3.0 - 2.0 * f.0), permutation(self.seed as i32, a) as f32 / 255.0 * 2.0 - 1.0,
f.1 * f.1 * (3.0 - 2.0 * f.1) permutation(self.seed as i32, b) as f32 / 255.0 * 2.0 - 1.0,
); u.0,
),
lerp(
permutation(self.seed as i32, a + 1) as f32 / 255.0 * 2.0 - 1.0,
permutation(self.seed as i32, b + 1) as f32 / 255.0 * 2.0 - 1.0,
u.0,
),
u.1,
)
}
let a = self.permutation(i.0) + i.1; pub fn generate(&self) -> Vec<f32> {
let b = self.permutation(i.0 + 1) + i.1; let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
let mut max_amplitude = 0.0;
let mut amplitude = 0.5;
lerp( // Calculate max amplitude for normalization
lerp( for _ in 0..4 {
self.permutation(a) as f32 / 255.0 * 2.0 - 1.0, max_amplitude += amplitude;
self.permutation(b) as f32 / 255.0 * 2.0 - 1.0, amplitude *= 0.5;
u.0 }
),
lerp(
self.permutation(a + 1) as f32 / 255.0 * 2.0 - 1.0,
self.permutation(b + 1) as f32 / 255.0 * 2.0 - 1.0,
u.0
),
u.1
)
}
pub fn generate(&self) -> Vec<f32> { for y in 0..self.size.1 {
let mut noise = Vec::with_capacity(self.size.0 * self.size.1); for x in 0..self.size.0 {
let mut max_amplitude = 0.0; let mut uv = (
let mut amplitude = 0.5; x as f32 / self.size.0 as f32 * self.frequency as f32,
y as f32 / self.size.1 as f32 * self.frequency as f32,
);
// Calculate max amplitude for normalization let mut f = 0.0;
for _ in 0..4 { let mut amplitude = 0.5;
max_amplitude += amplitude;
amplitude *= 0.5;
}
for y in 0..self.size.1 { /*for _ in 0..4 { // 4 octaves*/
for x in 0..self.size.0 { f += amplitude * self.noise(uv);
let mut uv = (
x as f32 / self.size.0 as f32 * self.frequency as f32,
y as f32 / self.size.1 as f32 * self.frequency as f32,
);
let mut f = 0.0; // Double frequency for next octave
let mut amplitude = 0.5; uv = (uv.0 * 2.0, uv.1 * 2.0);
/*for _ in 0..4 { // 4 octaves*/ // Reduce amplitude (persistence)
f += amplitude * self.noise(uv); amplitude *= 0.5;
/*}*/
// Double frequency for next octave // Normalize and convert to [0, 1]
uv = (uv.0 * 2.0, uv.1 * 2.0); f = ((f / max_amplitude) + 1.0) * 0.5;
// Reduce amplitude (persistence) noise.push(f);
amplitude *= 0.5; }
/*}*/ }
// Normalize and convert to [0, 1] noise
f = ((f / max_amplitude) + 1.0) * 0.5; }
noise.push(f); pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
} let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
} let mut max_amplitude = 0.0;
let mut amplitude = 1.0;
noise // Calculate max amplitude for normalization
} for _ in 0..octaves {
max_amplitude += amplitude;
amplitude *= persistence;
}
for y in 0..self.size.1 {
for x in 0..self.size.0 {
// Convert to UV space and scale by frequency
let mut uv = (
x as f32 / self.size.0 as f32 * self.frequency as f32,
y as f32 / self.size.1 as f32 * self.frequency as f32,
);
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> { let mut f = 0.0;
let mut noise = Vec::with_capacity(self.size.0 * self.size.1); let mut amplitude = 1.0;
let mut max_amplitude = 0.0;
let mut amplitude = 1.0;
// Calculate max amplitude for normalization for _ in 0..octaves {
for _ in 0..octaves { f += amplitude * self.noise(uv);
max_amplitude += amplitude;
amplitude *= persistence;
}
for y in 0..self.size.1 { // Double frequency for next octave
for x in 0..self.size.0 { uv = (uv.0 * 2.0, uv.1 * 2.0);
// Convert to UV space and scale by frequency
let mut uv = (
x as f32 / self.size.0 as f32 * self.frequency as f32,
y as f32 / self.size.1 as f32 * self.frequency as f32,
);
let mut f = 0.0; // Reduce amplitude (persistence)
let mut amplitude = 1.0; amplitude *= persistence as f32;
}
for _ in 0..octaves { // Normalize and convert to [0, 1]
f += amplitude * self.noise(uv); f = ((f / max_amplitude as f32) + 1.0) * 0.5;
// Double frequency for next octave noise.push(f);
uv = (uv.0 * 2.0, uv.1 * 2.0); }
}
// Reduce amplitude (persistence) noise
amplitude *= persistence as f32; }
} }
// Normalize and convert to [0, 1]
f = ((f / max_amplitude as f32) + 1.0) * 0.5;
noise.push(f);
}
}
noise
}
}