refactor(renderer2d): modularized and abstracted away the render context

This commit is contained in:
lisk77 2025-10-26 15:21:26 +01:00
parent 9a0e02567b
commit 66c444371a
5 changed files with 412 additions and 1145 deletions

View file

@ -1,3 +1,4 @@
use comet_log::fatal;
use comet_math::{m4, p3, v2, v3}; use comet_math::{m4, p3, v2, v3};
#[rustfmt::skip] #[rustfmt::skip]
@ -10,63 +11,89 @@ pub const OPENGL_TO_WGPU_MATRIX: cgmath::Matrix4<f32> = cgmath::Matrix4::new(
const SAFE_FRAC_PI_2: f32 = std::f32::consts::FRAC_PI_2 - 0.0001; const SAFE_FRAC_PI_2: f32 = std::f32::consts::FRAC_PI_2 - 0.0001;
pub struct CameraManager {
cameras: Vec<RenderCamera>,
active_camera: usize,
}
impl CameraManager {
pub fn new() -> Self {
Self {
cameras: Vec::new(),
active_camera: 0,
}
}
pub fn set_cameras(&mut self, cameras: Vec<RenderCamera>) {
self.cameras = cameras
}
pub fn set_active(&mut self, active: usize) {
if active >= self.cameras.len() {
fatal!("Active camera index is out of range of the RenderCamera array!")
}
}
pub fn get_camera(&self) -> &RenderCamera {
self.cameras.get(self.active_camera).unwrap()
}
}
pub struct RenderCamera { pub struct RenderCamera {
zoom: f32, zoom: f32,
dimension: v2, dimension: v2,
position: v3 position: v3,
} }
impl RenderCamera { impl RenderCamera {
pub fn new( pub fn new(zoom: f32, dimension: v2, position: v3) -> Self {
zoom: f32, Self {
dimension: v2, zoom,
position: v3 dimension,
) -> Self { position,
Self { }
zoom, }
dimension,
position
}
}
pub fn build_view_projection_matrix(&self) -> m4 { pub fn build_view_projection_matrix(&self) -> m4 {
let zoomed_width = self.dimension.x() / self.zoom; let zoomed_width = self.dimension.x() / self.zoom;
let zoomed_height = self.dimension.y() / self.zoom; let zoomed_height = self.dimension.y() / self.zoom;
m4::OPENGL_CONV * m4::orthographic_projection(self.position.x() - zoomed_width / 2.0, m4::OPENGL_CONV
self.position.x() + zoomed_width / 2.0, * m4::orthographic_projection(
self.position.y() - zoomed_height / 2.0, self.position.x() - zoomed_width / 2.0,
self.position.y() + zoomed_height / 2.0, self.position.x() + zoomed_width / 2.0,
1.0, self.position.y() - zoomed_height / 2.0,
0.0) self.position.y() + zoomed_height / 2.0,
1.0,
0.0,
)
/*OPENGL_TO_WGPU_MATRIX * cgmath::ortho(self.position.x() - zoomed_width / 2.0, /*OPENGL_TO_WGPU_MATRIX * cgmath::ortho(self.position.x() - zoomed_width / 2.0,
self.position.x() + zoomed_width / 2.0, self.position.x() + zoomed_width / 2.0,
self.position.y() - zoomed_height / 2.0, self.position.y() - zoomed_height / 2.0,
self.position.y() + zoomed_height / 2.0, self.position.y() + zoomed_height / 2.0,
1.0, 1.0,
0.0)*/ 0.0)*/
} }
} }
#[repr(C)] #[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] #[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct CameraUniform { pub struct CameraUniform {
view_proj: [[f32; 4]; 4], view_proj: [[f32; 4]; 4],
} }
impl CameraUniform { impl CameraUniform {
pub fn new() -> Self { pub fn new() -> Self {
use cgmath::SquareMatrix; use cgmath::SquareMatrix;
Self { Self {
view_proj: cgmath::Matrix4::identity().into(), view_proj: cgmath::Matrix4::identity().into(),
} }
} }
pub fn update_view_proj(&mut self, camera: &RenderCamera) { pub fn update_view_proj(&mut self, camera: &RenderCamera) {
self.view_proj = camera.build_view_projection_matrix().into(); self.view_proj = camera.build_view_projection_matrix().into();
} }
} }
/*use comet_math::{Mat4, Point3, Vec3}; /*use comet_math::{Mat4, Point3, Vec3};
@ -79,52 +106,52 @@ pub const OPENGL_TO_WGPU_MATRIX: Mat4 = Mat4::new(
); );
pub struct Camera { pub struct Camera {
eye: Point3, eye: Point3,
target: Point3, target: Point3,
up: Vec3, up: Vec3,
aspect: f32, aspect: f32,
fovy: f32, fovy: f32,
znear: f32, znear: f32,
zfar: f32, zfar: f32,
} }
impl Camera { impl Camera {
pub fn new(eye: Point3, target: Point3, up: Vec3, aspect: f32, fovy: f32, znear: f32, zfar: f32) -> Self { pub fn new(eye: Point3, target: Point3, up: Vec3, aspect: f32, fovy: f32, znear: f32, zfar: f32) -> Self {
Self { Self {
eye, eye,
target, target,
up, up,
aspect, aspect,
fovy, fovy,
znear, znear,
zfar, zfar,
} }
} }
pub fn build_view_projection_matrix(&self) -> Mat4 { pub fn build_view_projection_matrix(&self) -> Mat4 {
let view = Mat4::look_at_rh(self.eye, self.target, self.up); let view = Mat4::look_at_rh(self.eye, self.target, self.up);
let proj = Mat4::perspective_matrix(self.fovy, self.aspect, self.znear, self.zfar); let proj = Mat4::perspective_matrix(self.fovy, self.aspect, self.znear, self.zfar);
(OPENGL_TO_WGPU_MATRIX * proj * view).transpose() (OPENGL_TO_WGPU_MATRIX * proj * view).transpose()
} }
} }
#[repr(C)] #[repr(C)]
#[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)] #[derive(Debug, Copy, Clone, bytemuck::Pod, bytemuck::Zeroable)]
pub struct CameraUniform { pub struct CameraUniform {
view_proj: [[f32; 4]; 4], view_proj: [[f32; 4]; 4],
} }
impl CameraUniform { impl CameraUniform {
pub fn new() -> Self { pub fn new() -> Self {
Self { Self {
view_proj: Mat4::IDENTITY.into(), view_proj: Mat4::IDENTITY.into(),
} }
} }
pub fn update_view_proj(&mut self, camera: &Camera) { pub fn update_view_proj(&mut self, camera: &Camera) {
self.view_proj = camera.build_view_projection_matrix().into(); self.view_proj = camera.build_view_projection_matrix().into();
} }
}*/ }*/
/*use std::f32::consts::FRAC_PI_2; /*use std::f32::consts::FRAC_PI_2;
@ -137,182 +164,183 @@ const SAFE_FRAC_PI_2: f32 = FRAC_PI_2 - 0.0001;
#[derive(Debug)] #[derive(Debug)]
pub struct Camera3D { pub struct Camera3D {
pub position: Point3, pub position: Point3,
yaw: f32, yaw: f32,
pitch: f32, pitch: f32,
} }
impl Camera3D { impl Camera3D {
pub fn new( pub fn new(
position: Point3, position: Point3,
yaw: f32, yaw: f32,
pitch: f32, pitch: f32,
) -> Self { ) -> Self {
Self { Self {
position: position.into(), position: position.into(),
yaw: yaw.into(), yaw: yaw.into(),
pitch: pitch.into(), pitch: pitch.into(),
} }
} }
pub fn calc_matrix(&self) -> Mat4 { pub fn calc_matrix(&self) -> Mat4 {
let (sin_pitch, cos_pitch) = self.pitch.0.sin_cos(); let (sin_pitch, cos_pitch) = self.pitch.0.sin_cos();
let (sin_yaw, cos_yaw) = self.yaw.0.sin_cos(); let (sin_yaw, cos_yaw) = self.yaw.0.sin_cos();
Mat4::look_to_rh( Mat4::look_to_rh(
self.position, self.position,
Vec3::new(cos_pitch * cos_yaw, sin_pitch, cos_pitch * sin_yaw).normalize(), Vec3::new(cos_pitch * cos_yaw, sin_pitch, cos_pitch * sin_yaw).normalize(),
Vec3::unit_y(), Vec3::unit_y(),
) )
} }
} }
pub struct Projection { pub struct Projection {
aspect: f32, aspect: f32,
fovy: Rad<f32>, fovy: Rad<f32>,
znear: f32, znear: f32,
zfar: f32, zfar: f32,
} }
impl Projection { impl Projection {
pub fn new<F: Into<Rad<f32>>>(width: u32, height: u32, fovy: F, znear: f32, zfar: f32) -> Self { pub fn new<F: Into<Rad<f32>>>(width: u32, height: u32, fovy: F, znear: f32, zfar: f32) -> Self {
Self { Self {
aspect: width as f32 / height as f32, aspect: width as f32 / height as f32,
fovy: fovy.into(), fovy: fovy.into(),
znear, znear,
zfar, zfar,
} }
} }
pub fn resize(&mut self, width: u32, height: u32) { pub fn resize(&mut self, width: u32, height: u32) {
self.aspect = width as f32 / height as f32; self.aspect = width as f32 / height as f32;
} }
pub fn calc_matrix(&self) -> Matrix4<f32> { pub fn calc_matrix(&self) -> Matrix4<f32> {
// UDPATE // UDPATE
perspective(self.fovy, self.aspect, self.znear, self.zfar) perspective(self.fovy, self.aspect, self.znear, self.zfar)
} }
} }
#[derive(Debug)] #[derive(Debug)]
pub struct CameraController { pub struct CameraController {
amount_left: f32, amount_left: f32,
amount_right: f32, amount_right: f32,
amount_forward: f32, amount_forward: f32,
amount_backward: f32, amount_backward: f32,
amount_up: f32, amount_up: f32,
amount_down: f32, amount_down: f32,
rotate_horizontal: f32, rotate_horizontal: f32,
rotate_vertical: f32, rotate_vertical: f32,
scroll: f32, scroll: f32,
speed: f32, speed: f32,
sensitivity: f32, sensitivity: f32,
} }
impl CameraController { impl CameraController {
pub fn new(speed: f32, sensitivity: f32) -> Self { pub fn new(speed: f32, sensitivity: f32) -> Self {
Self { Self {
amount_left: 0.0, amount_left: 0.0,
amount_right: 0.0, amount_right: 0.0,
amount_forward: 0.0, amount_forward: 0.0,
amount_backward: 0.0, amount_backward: 0.0,
amount_up: 0.0, amount_up: 0.0,
amount_down: 0.0, amount_down: 0.0,
rotate_horizontal: 0.0, rotate_horizontal: 0.0,
rotate_vertical: 0.0, rotate_vertical: 0.0,
scroll: 0.0, scroll: 0.0,
speed, speed,
sensitivity, sensitivity,
} }
} }
pub fn process_keyboard(&mut self, key: KeyCode, state: ElementState) -> bool { pub fn process_keyboard(&mut self, key: KeyCode, state: ElementState) -> bool {
let amount = if state == ElementState::Pressed { let amount = if state == ElementState::Pressed {
1.0 1.0
} else { } else {
0.0 0.0
}; };
match key { match key {
KeyCode::KeyW | KeyCode::ArrowUp => { KeyCode::KeyW | KeyCode::ArrowUp => {
self.amount_forward = amount; self.amount_forward = amount;
true true
} }
KeyCode::KeyS | KeyCode::ArrowDown => { KeyCode::KeyS | KeyCode::ArrowDown => {
self.amount_backward = amount; self.amount_backward = amount;
true true
} }
KeyCode::KeyA | KeyCode::ArrowLeft => { KeyCode::KeyA | KeyCode::ArrowLeft => {
self.amount_left = amount; self.amount_left = amount;
true true
} }
KeyCode::KeyD | KeyCode::ArrowRight => { KeyCode::KeyD | KeyCode::ArrowRight => {
self.amount_right = amount; self.amount_right = amount;
true true
} }
KeyCode::Space => { KeyCode::Space => {
self.amount_up = amount; self.amount_up = amount;
true true
} }
KeyCode::ShiftLeft => { KeyCode::ShiftLeft => {
self.amount_down = amount; self.amount_down = amount;
true true
} }
_ => false, _ => false,
} }
} }
pub fn process_mouse(&mut self, mouse_dx: f64, mouse_dy: f64) { pub fn process_mouse(&mut self, mouse_dx: f64, mouse_dy: f64) {
self.rotate_horizontal = mouse_dx as f32; self.rotate_horizontal = mouse_dx as f32;
self.rotate_vertical = mouse_dy as f32; self.rotate_vertical = mouse_dy as f32;
} }
pub fn process_scroll(&mut self, delta: &MouseScrollDelta) { pub fn process_scroll(&mut self, delta: &MouseScrollDelta) {
self.scroll = match delta { self.scroll = match delta {
// I'm assuming a line is about 100 pixels // I'm assuming a line is about 100 pixels
MouseScrollDelta::LineDelta(_, scroll) => -scroll * 0.5, MouseScrollDelta::LineDelta(_, scroll) => -scroll * 0.5,
MouseScrollDelta::PixelDelta(PhysicalPosition { y: scroll, .. }) => -*scroll as f32, MouseScrollDelta::PixelDelta(PhysicalPosition { y: scroll, .. }) => -*scroll as f32,
}; };
} }
pub fn update_camera(&mut self, camera: &mut Camera, dt: Duration) { pub fn update_camera(&mut self, camera: &mut Camera, dt: Duration) {
let dt = dt.as_secs_f32(); let dt = dt.as_secs_f32();
// Move forward/backward and left/right // Move forward/backward and left/right
let (yaw_sin, yaw_cos) = camera.yaw.0.sin_cos(); let (yaw_sin, yaw_cos) = camera.yaw.0.sin_cos();
let forward = Vector3::new(yaw_cos, 0.0, yaw_sin).normalize(); let forward = Vector3::new(yaw_cos, 0.0, yaw_sin).normalize();
let right = Vector3::new(-yaw_sin, 0.0, yaw_cos).normalize(); let right = Vector3::new(-yaw_sin, 0.0, yaw_cos).normalize();
camera.position += forward * (self.amount_forward - self.amount_backward) * self.speed * dt; camera.position += forward * (self.amount_forward - self.amount_backward) * self.speed * dt;
camera.position += right * (self.amount_right - self.amount_left) * self.speed * dt; camera.position += right * (self.amount_right - self.amount_left) * self.speed * dt;
// Move in/out (aka. "zoom") // Move in/out (aka. "zoom")
// Note: this isn't an actual zoom. The camera's position // Note: this isn't an actual zoom. The camera's position
// changes when zooming. I've added this to make it easier // changes when zooming. I've added this to make it easier
// to get closer to an object you want to focus on. // to get closer to an object you want to focus on.
let (pitch_sin, pitch_cos) = camera.pitch.0.sin_cos(); let (pitch_sin, pitch_cos) = camera.pitch.0.sin_cos();
let scrollward = let scrollward =
Vector3::new(pitch_cos * yaw_cos, pitch_sin, pitch_cos * yaw_sin).normalize(); Vector3::new(pitch_cos * yaw_cos, pitch_sin, pitch_cos * yaw_sin).normalize();
camera.position += scrollward * self.scroll * self.speed * self.sensitivity * dt; camera.position += scrollward * self.scroll * self.speed * self.sensitivity * dt;
self.scroll = 0.0; self.scroll = 0.0;
// Move up/down. Since we don't use roll, we can just // Move up/down. Since we don't use roll, we can just
// modify the y coordinate directly. // modify the y coordinate directly.
camera.position.y += (self.amount_up - self.amount_down) * self.speed * dt; camera.position.y += (self.amount_up - self.amount_down) * self.speed * dt;
// Rotate // Rotate
camera.yaw += Rad(self.rotate_horizontal) * self.sensitivity * dt; camera.yaw += Rad(self.rotate_horizontal) * self.sensitivity * dt;
camera.pitch += Rad(-self.rotate_vertical) * self.sensitivity * dt; camera.pitch += Rad(-self.rotate_vertical) * self.sensitivity * dt;
// If process_mouse isn't called every frame, these values // If process_mouse isn't called every frame, these values
// will not get set to zero, and the camera will rotate // will not get set to zero, and the camera will rotate
// when moving in a non cardinal direction. // when moving in a non cardinal direction.
self.rotate_horizontal = 0.0; self.rotate_horizontal = 0.0;
self.rotate_vertical = 0.0; self.rotate_vertical = 0.0;
// Keep the camera's angle from going too high/low.
if camera.pitch < -Rad(SAFE_FRAC_PI_2) {
camera.pitch = -Rad(SAFE_FRAC_PI_2);
} else if camera.pitch > Rad(SAFE_FRAC_PI_2) {
camera.pitch = Rad(SAFE_FRAC_PI_2);
}
}
}*/
// Keep the camera's angle from going too high/low.
if camera.pitch < -Rad(SAFE_FRAC_PI_2) {
camera.pitch = -Rad(SAFE_FRAC_PI_2);
} else if camera.pitch > Rad(SAFE_FRAC_PI_2) {
camera.pitch = Rad(SAFE_FRAC_PI_2);
}
}
}*/

View file

@ -1,7 +1,6 @@
mod camera; mod camera;
mod draw_info; mod draw_info;
pub mod render_context;
mod render_group; mod render_group;
mod render_pass;
pub mod renderer; pub mod renderer;
pub mod renderer2d; pub mod renderer2d;
pub mod renderer2d_;

View file

@ -0,0 +1,126 @@
use comet_colors::Color;
use std::sync::Arc;
use winit::{dpi::PhysicalSize, window::Window};
pub struct RenderContext<'a> {
device: wgpu::Device,
queue: wgpu::Queue,
surface: wgpu::Surface<'a>,
config: wgpu::SurfaceConfiguration,
size: PhysicalSize<u32>,
scale_factor: f64,
clear_color: wgpu::Color,
}
impl<'a> RenderContext<'a> {
pub fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Self {
let size = window.inner_size();
let scale_factor = window.scale_factor();
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::PRIMARY,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
let adapter = pollster::block_on(instance.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
}))
.unwrap();
let (device, queue) = pollster::block_on(adapter.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
memory_hints: Default::default(),
},
None, // Trace path
))
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
},
};
Self {
device,
queue,
surface,
config,
size,
scale_factor,
clear_color,
}
}
pub fn device(&self) -> &wgpu::Device {
&self.device
}
pub fn queue(&self) -> &wgpu::Queue {
&self.queue
}
pub fn surface(&self) -> &wgpu::Surface {
&self.surface
}
pub fn configure_surface(&mut self) {
self.surface.configure(&self.device, &self.config);
}
pub fn config(&self) -> &wgpu::SurfaceConfiguration {
&self.config
}
pub fn config_mut(&mut self) -> &mut wgpu::SurfaceConfiguration {
&mut self.config
}
pub fn size(&self) -> PhysicalSize<u32> {
self.size
}
pub fn set_size(&mut self, new_size: PhysicalSize<u32>) {
self.size = new_size
}
pub fn scale_factor(&self) -> f64 {
self.scale_factor
}
pub fn set_scale_factor(&mut self, scale_factor: f64) {
self.scale_factor = scale_factor
}
pub fn clear_color(&self) -> wgpu::Color {
self.clear_color
}
}

948
crates/comet_renderer/src/renderer2d.rs Executable file → Normal file
View file

@ -1,948 +1,54 @@
use crate::{ use crate::renderer::Renderer;
camera::{CameraUniform, RenderCamera}, use crate::{camera::CameraManager, render_context::RenderContext};
draw_info::DrawInfo,
renderer::Renderer,
};
use comet_colors::Color; use comet_colors::Color;
use comet_ecs::{Camera2D, Component, Position2D, Render, Render2D, Scene, Text, Transform2D}; use comet_resources::graphic_resource_manager::GraphicResourceManager;
use comet_log::*;
use comet_math::{p2, v2, v3};
use comet_resources::texture_atlas::TextureRegion;
use comet_resources::{graphic_resource_manager::GraphicResourceManager, Texture, Vertex};
use comet_structs::ComponentSet;
use std::iter;
use std::path::PathBuf;
use std::sync::Arc; use std::sync::Arc;
use std::time::Instant; use winit::{dpi::PhysicalSize, window::Window};
use wgpu::naga::ShaderStage;
use wgpu::util::DeviceExt;
use wgpu::BufferUsages;
use winit::dpi::PhysicalSize;
use winit::window::Window;
pub struct Renderer2D<'a> { pub struct Renderer2D<'a> {
surface: wgpu::Surface<'a>, render_context: RenderContext<'a>,
device: wgpu::Device, resource_manager: GraphicResourceManager,
queue: wgpu::Queue, camera_manager: CameraManager,
config: wgpu::SurfaceConfiguration,
size: PhysicalSize<u32>,
scale_factor: f64,
universal_render_pipeline: wgpu::RenderPipeline,
texture_bind_group_layout: wgpu::BindGroupLayout,
texture_sampler: wgpu::Sampler,
camera: RenderCamera,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
draw_info: Vec<DrawInfo>,
graphic_resource_manager: GraphicResourceManager,
delta_time: f32, delta_time: f32,
last_frame_time: Instant,
clear_color: wgpu::Color,
}
impl<'a> Renderer2D<'a> {
pub fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Renderer2D<'a> {
let size = window.inner_size(); //PhysicalSize::<u32>::new(1920, 1080);
let scale_factor = window.scale_factor();
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::PRIMARY,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
let adapter = pollster::block_on(instance.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
}))
.unwrap();
let (device, queue) = pollster::block_on(adapter.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
memory_hints: Default::default(),
},
None, // Trace path
))
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Universal Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()),
});
let graphic_resource_manager = GraphicResourceManager::new();
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("Universal Texture Bind Group Layout"),
});
let camera = RenderCamera::new(1.0, v2::new(2.0, 2.0), v3::new(0.0, 0.0, 0.0));
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Universal Camera Bind Group Layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("Universal Camera Bind Group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Universal Render Pipeline Layout"),
bind_group_layouts: &[&texture_bind_group_layout, &camera_bind_group_layout],
push_constant_ranges: &[],
});
let universal_render_pipeline =
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Universal Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 1.0,
},
};
let texture_sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
lod_min_clamp: 0.0,
lod_max_clamp: 100.0,
compare: None,
anisotropy_clamp: 16,
border_color: None,
..Default::default()
});
let mut draw_info: Vec<DrawInfo> = Vec::new();
draw_info.push(DrawInfo::new(
"Universal Draw".to_string(),
&device,
&Texture::from_image(
&device,
&queue,
&image::DynamicImage::new(1, 1, image::ColorType::Rgba8),
None,
false,
)
.unwrap(),
&texture_bind_group_layout,
&texture_sampler,
vec![],
vec![],
));
Self {
surface,
device,
queue,
config,
size,
scale_factor,
universal_render_pipeline,
texture_bind_group_layout,
texture_sampler,
camera,
camera_uniform,
camera_buffer,
camera_bind_group,
draw_info,
graphic_resource_manager,
delta_time: 0.0,
last_frame_time: Instant::now(),
clear_color,
}
}
pub fn dt(&self) -> f32 {
self.delta_time
}
pub fn config(&self) -> &wgpu::SurfaceConfiguration {
&self.config
}
pub fn size(&self) -> PhysicalSize<u32> {
self.size
}
pub fn resize(&mut self, new_size: PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn scale_factor(&self) -> f64 {
self.scale_factor
}
pub fn set_scale_factor(&mut self, scale_factor: f64) {
self.scale_factor = scale_factor
}
pub fn add_draw_call(&mut self, draw_call: String, texture: Texture) {
let draw_info = DrawInfo::new(
draw_call,
&self.device,
&texture,
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(draw_info);
}
/// A function that loads a shader from the resources/shaders dir given the full name of the shader file.
pub fn load_shader(&mut self, file_name: &str, shader_stage: Option<ShaderStage>) {
self.graphic_resource_manager
.load_shader(
shader_stage,
((Self::get_project_root()
.unwrap()
.as_os_str()
.to_str()
.unwrap()
.to_string()
+ "/res/shaders/")
.as_str()
.to_string()
+ file_name)
.as_str(),
&self.device,
)
.unwrap();
info!("Shader ({}) loaded successfully", file_name);
}
/// A function that loads a list of shaders from the given filenames out of the resources/shaders dir
pub fn load_shaders(&mut self, shader_stages: Vec<Option<ShaderStage>>, file_names: Vec<&str>) {
for (i, file_name) in file_names.iter().enumerate() {
self.load_shader(file_name, shader_stages[i].clone());
info!("Shader ({}) loaded successfully", file_name);
}
}
/// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded.
pub fn apply_shader(&mut self, shader: &str) {
let module = match self.graphic_resource_manager.get_shader(shader) {
Some(module) => module,
None => {
error!("Shader not found");
return;
}
};
}
/// A function to revert back to the base shader of the `Renderer2D`
pub fn apply_base_shader(&mut self) {
todo!()
}
/// A function to load a TTF font from the specified path
pub fn load_font(&mut self, path: &str, size: f32) {
self.graphic_resource_manager.load_font(path, size);
let atlas = self
.graphic_resource_manager
.fonts()
.iter()
.find(|f| f.name() == path)
.unwrap()
.glyphs()
.atlas();
let font_info = DrawInfo::new(
format!("{}", path),
&self.device,
&Texture::from_image(&self.device, &self.queue, atlas, None, false).unwrap(),
&self.texture_bind_group_layout,
&self.texture_sampler,
vec![],
vec![],
);
self.draw_info.push(font_info);
}
/// An interface for getting the location of the texture in the texture atlas.
pub fn get_texture_region(&self, texture_path: String) -> Option<&TextureRegion> {
if !self
.graphic_resource_manager
.texture_atlas()
.textures()
.contains_key(&texture_path)
{
error!("Texture {} not found in atlas", &texture_path);
}
self.graphic_resource_manager
.texture_atlas()
.textures()
.get(&texture_path)
}
/// A function to get the `TextureRegion` of a specified glyph
pub fn get_glyph_region(&self, glyph: char, font: String) -> &TextureRegion {
let font_atlas = self
.graphic_resource_manager
.fonts()
.iter()
.find(|f| f.name() == font)
.unwrap();
font_atlas.get_glyph(glyph).unwrap()
}
/// A function that allows you to set the texture atlas with a list of paths to the textures.
/// The old texture atlas will be replaced with the new one.
pub fn set_texture_atlas_by_paths(&mut self, paths: Vec<String>) {
self.graphic_resource_manager.create_texture_atlas(paths);
self.draw_info[0].set_texture(
&self.device,
&self.texture_bind_group_layout,
&Texture::from_image(
&self.device,
&self.queue,
self.graphic_resource_manager.texture_atlas().atlas(),
None,
false,
)
.unwrap(),
);
}
fn set_texture_atlas(&mut self, texture_atlas: Texture) {
self.draw_info[0].set_texture(
&self.device,
&self.texture_bind_group_layout,
&texture_atlas,
);
}
fn get_project_root() -> std::io::Result<PathBuf> {
let path = std::env::current_dir()?;
let mut path_ancestors = path.as_path().ancestors();
while let Some(p) = path_ancestors.next() {
let has_cargo = std::fs::read_dir(p)?
.into_iter()
.any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock"));
if has_cargo {
return Ok(PathBuf::from(p));
}
}
Err(std::io::Error::new(
std::io::ErrorKind::NotFound,
"Ran out of places to find Cargo.toml",
))
}
/// A function that takes all the textures inside the resources/textures folder and creates a texture atlas from them.
pub fn initialize_atlas(&mut self) {
let texture_path = "res/textures/".to_string();
let mut paths: Vec<String> = Vec::new();
for path in std::fs::read_dir(
Self::get_project_root()
.unwrap()
.as_os_str()
.to_str()
.unwrap()
.to_string()
+ "/res/textures",
)
.unwrap()
{
paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap());
}
self.set_texture_atlas_by_paths(paths);
}
/// A function that writes on the buffers and sets the geometry and index buffer of the `Renderer2D` with the given data.
fn set_buffers(&mut self, new_geometry_buffer: Vec<Vertex>, new_index_buffer: Vec<u16>) {
self.draw_info[0].update_vertex_buffer(&self.device, &self.queue, new_geometry_buffer);
self.draw_info[0].update_index_buffer(&self.device, &self.queue, new_index_buffer);
}
fn add_text_to_buffers(
&self,
text: String,
font: String,
size: f32,
position: p2,
color: wgpu::Color,
bounds: &mut v2,
) -> (Vec<Vertex>, Vec<u16>) {
let vert_color = [
color.r as f32,
color.g as f32,
color.b as f32,
color.a as f32,
];
let screen_position = p2::new(
position.x() / self.config.width as f32,
position.y() / self.config.height as f32,
);
let font_data = self
.graphic_resource_manager
.fonts()
.iter()
.find(|f| f.name() == font)
.unwrap();
let scale_factor = size / font_data.size();
let line_height = (font_data.line_height() / self.config.height as f32) * scale_factor;
let lines = text
.split("\n")
.map(|s| {
s.split("")
.map(|escape| match escape {
_ if escape == "\t" => " ",
_ => escape,
})
.collect::<String>()
})
.collect::<Vec<String>>();
let mut max_line_width_px = 0.0;
let mut total_height_px = 0.0;
for line in &lines {
let mut line_width_px = 0.0;
for c in line.chars() {
if let Some(region) = font_data.get_glyph(c) {
line_width_px += region.advance();
}
}
if line_width_px > max_line_width_px {
max_line_width_px = line_width_px;
}
total_height_px += font_data.line_height();
}
bounds.set_x((max_line_width_px / self.config.width as f32) * scale_factor);
bounds.set_y((total_height_px / self.config.height as f32) * scale_factor);
let mut x_offset = 0.0;
let mut y_offset = 0.0;
let mut vertex_data = Vec::new();
let mut index_data = Vec::new();
for line in lines {
for c in line.chars() {
let region = self.get_glyph_region(c, font.clone());
let (dim_x, dim_y) = region.dimensions();
let w = (dim_x as f32 / self.config.width as f32) * scale_factor;
let h = (dim_y as f32 / self.config.height as f32) * scale_factor;
let offset_x_px = (region.offset_x() / self.config.width as f32) * scale_factor;
let offset_y_px = (region.offset_y() / self.config.height as f32) * scale_factor;
let glyph_left = screen_position.x() + x_offset + offset_x_px;
let glyph_top = screen_position.y() - offset_y_px - y_offset;
let glyph_right = glyph_left + w;
let glyph_bottom = glyph_top - h;
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex::new(
[glyph_left, glyph_top, 0.0],
[region.u0(), region.v0()],
vert_color,
),
Vertex::new(
[glyph_left, glyph_bottom, 0.0],
[region.u0(), region.v1()],
vert_color,
),
Vertex::new(
[glyph_right, glyph_bottom, 0.0],
[region.u1(), region.v1()],
vert_color,
),
Vertex::new(
[glyph_right, glyph_top, 0.0],
[region.u1(), region.v0()],
vert_color,
),
];
let buffer_size = vertex_data.len() as u16;
let indices: &mut Vec<u16> = &mut vec![
buffer_size,
buffer_size + 1,
buffer_size + 3,
buffer_size + 1,
buffer_size + 2,
buffer_size + 3,
];
x_offset += (region.advance() / self.config.width as f32) * scale_factor;
vertex_data.append(vertices);
index_data.append(indices);
}
y_offset += line_height;
x_offset = 0.0;
}
(vertex_data, index_data)
}
fn find_priority_camera(&self, cameras: Vec<Camera2D>) -> usize {
let mut priority = 0;
let mut position = 0;
for (i, camera) in cameras.iter().enumerate() {
if camera.priority() < priority {
priority = camera.priority();
position = i;
}
}
position
}
fn setup_camera<'b>(
&mut self,
cameras: Vec<usize>,
scene: &'b Scene,
) -> (&'b Position2D, &'b Camera2D) {
let cam = cameras
.get(
self.find_priority_camera(
cameras
.iter()
.map(|e| *scene.get_component::<Camera2D>(*e).unwrap())
.collect::<Vec<Camera2D>>(),
),
)
.unwrap();
let camera_component = scene.get_component::<Camera2D>(*cam).unwrap();
let camera_position = scene.get_component::<Transform2D>(*cam).unwrap().position();
let camera = RenderCamera::new(
camera_component.zoom(),
camera_component.dimensions(),
v3::new(
camera_position.as_vec().x(),
camera_position.as_vec().y(),
0.0,
),
);
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = self
.device
.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Universal Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: BufferUsages::UNIFORM | BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
self.device
.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("Universal Camera Bind Group Layout"),
});
let camera_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("Universal Camera Bind Group"),
});
self.camera = camera;
self.camera_buffer = camera_buffer;
self.camera_uniform = camera_uniform;
self.camera_bind_group = camera_bind_group;
(camera_position, camera_component)
}
/// A function to automatically render all the entities of the `Scene` struct.
/// The entities must have the `Render2D` and `Transform2D` components to be rendered as well as set visible.
pub fn render_scene_2d(&mut self, scene: &mut Scene) {
let cameras = scene.get_entities_with(vec![Transform2D::type_id(), Camera2D::type_id()]);
if cameras.is_empty() {
return;
}
let mut entities =
scene.get_entities_with(vec![Transform2D::type_id(), Render2D::type_id()]);
entities.sort_by(|&a, &b| {
let ra = scene.get_component::<Render2D>(a).unwrap();
let rb = scene.get_component::<Render2D>(b).unwrap();
ra.draw_index().cmp(&rb.draw_index())
});
let texts =
scene.get_entities_with(vec![Transform2D::type_id(), comet_ecs::Text::type_id()]);
self.setup_camera(cameras, scene);
let mut vertex_buffer: Vec<Vertex> = Vec::new();
let mut index_buffer: Vec<u16> = Vec::new();
for entity in entities {
let renderer_component = scene.get_component::<Render2D>(entity).unwrap();
let transform_component = scene.get_component::<Transform2D>(entity).unwrap();
if renderer_component.is_visible() {
let world_position = transform_component.position().clone();
let rotation_angle = transform_component.rotation().to_radians();
let mut t_region: Option<&TextureRegion> = None;
match self.get_texture_region(renderer_component.get_texture().to_string()) {
Some(texture_region) => {
t_region = Some(texture_region);
}
None => continue,
}
let region = t_region.unwrap();
let (dim_x, dim_y) = region.dimensions();
let scale = renderer_component.scale();
let half_width = dim_x as f32 * 0.5 * scale.x();
let half_height = dim_y as f32 * 0.5 * scale.y();
let buffer_size = vertex_buffer.len() as u16;
let world_corners = [
(-half_width, half_height),
(-half_width, -half_height),
(half_width, -half_height),
(half_width, half_height),
];
let cos_angle = rotation_angle.cos();
let sin_angle = rotation_angle.sin();
let mut rotated_world_corners = [(0.0f32, 0.0f32); 4];
for i in 0..4 {
let (x, y) = world_corners[i];
rotated_world_corners[i] = (
x * cos_angle - y * sin_angle + world_position.x(),
x * sin_angle + y * cos_angle + world_position.y(),
);
}
let mut screen_corners = [(0.0f32, 0.0f32); 4];
for i in 0..4 {
screen_corners[i] = (
rotated_world_corners[i].0 / self.config().width as f32,
rotated_world_corners[i].1 / self.config().height as f32,
);
}
vertex_buffer.append(&mut vec![
Vertex::new(
[screen_corners[0].0, screen_corners[0].1, 0.0],
[region.u0(), region.v0()],
[1.0, 1.0, 1.0, 1.0],
),
Vertex::new(
[screen_corners[1].0, screen_corners[1].1, 0.0],
[region.u0(), region.v1()],
[1.0, 1.0, 1.0, 1.0],
),
Vertex::new(
[screen_corners[2].0, screen_corners[2].1, 0.0],
[region.u1(), region.v1()],
[1.0, 1.0, 1.0, 1.0],
),
Vertex::new(
[screen_corners[3].0, screen_corners[3].1, 0.0],
[region.u1(), region.v0()],
[1.0, 1.0, 1.0, 1.0],
),
]);
index_buffer.append(&mut vec![
0 + buffer_size,
1 + buffer_size,
3 + buffer_size,
1 + buffer_size,
2 + buffer_size,
3 + buffer_size,
]);
}
}
for text in texts {
if let Some(component) = scene.get_component_mut::<Text>(text) {
if component.is_visible() {
let font = component.font().to_string();
let size = component.font_size();
let color = component.color().to_wgpu();
let content = component.content().to_string();
let transform = scene.get_component::<Transform2D>(text).unwrap();
let mut bounds = v2::ZERO;
let (vertices, indices) = self.add_text_to_buffers(
content,
font.clone(),
size,
p2::from_vec(transform.position().as_vec()),
color,
&mut bounds,
);
let component = scene.get_component_mut::<Text>(text).unwrap();
component.set_bounds(bounds);
let draw = self
.draw_info
.iter_mut()
.find(|d| d.name() == &format!("{}", font))
.unwrap();
draw.update_vertex_buffer(&self.device, &self.queue, vertices);
draw.update_index_buffer(&self.device, &self.queue, indices);
}
}
}
self.set_buffers(vertex_buffer, index_buffer);
}
fn sort_entities_by_position(&self, entity_data: Vec<(usize, Position2D)>) -> Vec<usize> {
let mut sorted_entities: Vec<usize> = vec![];
let mut entity_data = entity_data.clone();
entity_data.sort_by(|a, b| a.1.x().partial_cmp(&b.1.x()).unwrap());
for (i, _) in entity_data {
sorted_entities.push(i);
}
sorted_entities
}
pub fn update(&mut self) -> f32 {
let now = Instant::now();
self.delta_time = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds
self.last_frame_time = now;
self.delta_time
}
pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let output_view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Universal Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &output_view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(self.clear_color),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.universal_render_pipeline);
for i in 0..self.draw_info.len() {
render_pass.set_bind_group(0, self.draw_info[i].texture(), &[]);
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.draw_info[i].vertex_buffer().slice(..));
render_pass.set_index_buffer(
self.draw_info[i].index_buffer().slice(..),
wgpu::IndexFormat::Uint16,
);
render_pass.draw_indexed(0..self.draw_info[i].num_indices(), 0, 0..1);
}
}
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
} }
impl<'a> Renderer for Renderer2D<'a> { impl<'a> Renderer for Renderer2D<'a> {
fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Renderer2D<'a> { fn new(window: Arc<Window>, clear_color: Option<impl Color>) -> Self {
Self::new(window, clear_color) Self {
render_context: RenderContext::new(window, clear_color),
resource_manager: GraphicResourceManager::new(),
camera_manager: CameraManager::new(),
delta_time: 0.0,
}
} }
fn size(&self) -> PhysicalSize<u32> { fn size(&self) -> PhysicalSize<u32> {
self.size() self.render_context.size()
} }
fn resize(&mut self, new_size: PhysicalSize<u32>) { fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.resize(new_size) if new_size.width > 0 && new_size.height > 0 {
self.render_context.set_size(new_size);
self.render_context.config_mut().width = new_size.width;
self.render_context.config_mut().height = new_size.height;
self.render_context.configure_surface();
}
} }
fn scale_factor(&self) -> f64 { fn scale_factor(&self) -> f64 {
self.scale_factor() self.render_context.scale_factor()
} }
fn set_scale_factor(&mut self, scale_factor: f64) { fn set_scale_factor(&mut self, scale_factor: f64) {
self.set_scale_factor(scale_factor); self.render_context.set_scale_factor(scale_factor);
} }
fn update(&mut self) -> f32 { fn update(&mut self) -> f32 {
self.update() todo!()
} }
fn render(&mut self) -> Result<(), wgpu::SurfaceError> { fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
self.render() todo!()
} }
} }

View file

@ -140,6 +140,14 @@ impl<'a> Renderer for Renderer2D_<'a> {
self.render_context.resize(new_size) self.render_context.resize(new_size)
} }
fn scale_factor(&self) -> f64 {
todo!()
}
fn set_scale_factor(&mut self, scale_factor: f64) {
todo!()
}
fn update(&mut self) -> f32 { fn update(&mut self) -> f32 {
self.render_context.update() self.render_context.update()
} }