feat: Added shader loading and swapping as well as beginnings of out of the box noise generation and support for multiple render passes

This commit is contained in:
lisk77 2024-12-17 01:36:34 +01:00
parent 4ada207b3b
commit 2736d97d03
23 changed files with 1479 additions and 692 deletions

View file

@ -44,7 +44,7 @@ members = [
"./crates/comet_ecs",
"./crates/comet_input",
"./crates/comet_log"
, "crates/comet_ui"]
, "crates/comet_ui", "crates/comet_fonts", "crates/comet_sound"]
[workspace.dependencies]
comet_app = { path = "./crates/comet_app", workspace = true }

View file

@ -1,8 +1,9 @@
use std::any::{type_name, Any};
use std::sync::{Arc, Mutex};
use std::time::{Duration, Instant};
use comet_ecs::{Component, ComponentSet, Render, Transform2D, World};
use comet_resources::{ResourceManager, Vertex};
use comet_renderer::{Renderer2D};
use comet_renderer::renderer2d::Renderer2D;
use winit::{
event::{self, *},
@ -20,6 +21,7 @@ use winit_input_helper::WinitInputHelper;
use comet_input::input_handler::InputHandler;
use comet_input::keyboard::Key;
use comet_renderer::renderer::Renderer;
use crate::GameState;
pub enum ApplicationType {
App2D,
@ -34,6 +36,7 @@ pub struct App<'a> {
input_manager: WinitInputHelper,
delta_time: f32,
update_timer: f32,
game_state: Option<Box<dyn Any>>,
world: World,
fullscreen: bool,
should_quit: bool
@ -54,6 +57,7 @@ impl<'a> App<'a> {
input_manager: WinitInputHelper::new(),
delta_time: 0.0,
update_timer: 0.0166667,
game_state: None,
world,
fullscreen: false,
should_quit: false
@ -80,6 +84,11 @@ impl<'a> App<'a> {
self
}
pub fn with_game_state(mut self, game_state: impl Any + 'static) -> Self {
self.game_state = Some(Box::new(game_state));
self
}
fn load_icon(path: &std::path::Path) -> Option<Icon> {
let image = image::open(path).expect("Failed to open icon image");
let rgba_image = image.to_rgba8();
@ -87,6 +96,14 @@ impl<'a> App<'a> {
Some(Icon::from_rgba(rgba_image.into_raw(), width, height).unwrap())
}
pub fn game_state<T: 'static>(&self) -> Option<&T> {
self.game_state.as_ref()?.downcast_ref::<T>()
}
pub fn game_state_mut<T: 'static>(&mut self) -> Option<&mut T> {
self.game_state.as_mut()?.downcast_mut::<T>()
}
pub fn world(&self) -> &World {
&self.world
}
@ -118,6 +135,8 @@ impl<'a> App<'a> {
pub fn dt(&self) -> f32 {
self.update_timer
}
/// Sets the amount of times the game is updated per second
pub fn set_update_rate(&mut self, update_rate: u32) {
if update_rate == 0 {
self.update_timer = f32::INFINITY;
@ -146,16 +165,21 @@ impl<'a> App<'a> {
}
pub fn run<R: Renderer>(mut self, setup: fn(&mut App, &mut R), update: fn(&mut App, &mut R, f32)) {
info!("Starting up {}!", self.title);
pollster::block_on(async {
let event_loop = EventLoop::new().unwrap();
let window = Arc::new(Self::create_window(self.title, &self.icon, &self.size ,&event_loop));
let mut renderer = R::new(window.clone(), self.clear_color.clone()).await; // Pass Arc<Mutex<Window>> to renderer
window.set_maximized(true); // Lock window to set maximized
info!("Renderer created! ({})", type_name::<R>());
window.set_maximized(true);
info!("Setting up!");
setup(&mut self, &mut renderer);
let mut time_stack = 0.0;
info!("Starting event loop!");
event_loop.run(|event, elwt| {
self.delta_time = renderer.update();
@ -175,6 +199,26 @@ impl<'a> App<'a> {
}
match event {
Event::WindowEvent { ref event, window_id} => {
match event {
WindowEvent::CloseRequested {} => elwt.exit(),
WindowEvent::Resized(physical_size) => {
renderer.resize(*physical_size);
}
WindowEvent::RedrawRequested => {
window.request_redraw();
match renderer.render() {
Ok(_) => {},
Err(e) => error!("Error rendering: {}", e)
}
}
_ => {}
}
}
_ => {}
}
/*match event {
Event::WindowEvent { ref event, window_id, } =>
match event {
WindowEvent::CloseRequested {} => elwt.exit(),
@ -184,7 +228,7 @@ impl<'a> App<'a> {
WindowEvent::RedrawRequested => {
window.request_redraw();
match renderer.render() {
/*match renderer.render() {
Ok(_) => {}
Err(wgpu::SurfaceError::Lost | wgpu::SurfaceError::Outdated) => renderer.resize(renderer.size()),
Err(wgpu::SurfaceError::OutOfMemory) => {
@ -194,12 +238,12 @@ impl<'a> App<'a> {
Err(wgpu::SurfaceError::Timeout) => {
warn!("Surface timeout")
}
}
}*/
}
_ => {}
}
_ => {}
}
*/
}).unwrap()
}
);

View file

@ -0,0 +1 @@
pub trait GameState {}

View file

@ -1,2 +1,4 @@
pub use app::*;
mod app;
pub use game_state::*;
mod app;
mod game_state;

View file

@ -1,5 +1,8 @@
use std::cell::RefCell;
use std::rc::Rc;
// This is collection of basic components that are implemented out of the box
// You can use these components as is or as a reference to create your own components
// Also just as a nomenclature: bundles are a component made up of multiple components,
// so it's a collection of components bundled together (like Transform2D)
use crate::math::{
Vec2,
Vec3

View file

@ -1,5 +1,4 @@
use bit_set::BitSet;
use crate::ComponentSet;
#[derive(Debug, Clone, PartialEq)]
pub struct Entity {

View file

@ -6,4 +6,5 @@ edition = "2021"
[dependencies]
comet_log = { path = "../comet_log" }
num-traits = "0.2.19"
chrono = "0.4.0"
chrono = "0.4.0"
rand = "0.9.0-beta.1"

View file

@ -11,4 +11,5 @@ pub mod vector;
pub mod matrix;
pub mod quaternion;
pub mod bezier;
pub mod easings;
pub mod easings;
mod noise;

View file

@ -0,0 +1,39 @@
use rand::Rng;
/// The WhiteNoise struct works a factory for generating white noise, given the size of the texture.
pub struct WhiteNoise {
size: (usize, usize)
}
impl WhiteNoise {
pub fn new(width: usize, height: usize) -> Self {
Self {
size: (width, height)
}
}
pub fn set_width(&mut self, width: usize) {
self.size.0 = width;
}
pub fn set_height(&mut self, height: usize) {
self.size.1 = height;
}
pub fn set_size(&mut self, width: usize, height: usize) {
self.size = (width, height);
}
/// Generates white noise as a `Vec<f32>`. Size of the vector is `width * height`.
pub fn generate(&self) -> Vec<f32> {
let mut rng = rand::rng();
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
for _ in 0..self.size.0 * self.size.1 {
noise.push(rng.random_range(0.0..1.0));
}
noise
}
}

View file

@ -18,7 +18,7 @@ env_logger = "0.10"
pollster = "0.3"
log = "0.4"
tobj = { version = "3.2", default-features = false, features = ["async"]}
wgpu = { version = "22.0"}
wgpu = { version = "22.0", features = ["glsl", "wgsl", "naga-ir"]}
winit = { version = "0.29", features = ["rwh_05"] }
instant = "0.1"
chrono = "0.4.0"

View file

@ -30,11 +30,7 @@ impl Camera {
}
pub fn build_view_projection_matrix(&self) -> cgmath::Matrix4<f32> {
// 1.
let proj = cgmath::ortho(self.position.x() - self.dimension.x() / 2.0, self.position.x() + self.dimension.x() / 2.0, self.position.y() - self.dimension.y() / 2.0, self.position.y() + self.dimension.y() / 2.0, 1.0, 0.0);
// 3.
return OPENGL_TO_WGPU_MATRIX * proj;
OPENGL_TO_WGPU_MATRIX * cgmath::ortho(self.position.x() - self.dimension.x() / 2.0, self.position.x() + self.dimension.x() / 2.0, self.position.y() - self.dimension.y() / 2.0, self.position.y() + self.dimension.y() / 2.0, 1.0, 0.0)
}
}

View file

@ -1,29 +1,9 @@
use comet_math::Mat4;
mod camera;
pub mod renderer;
use core::default::Default;
use std::iter;
use std::path::PathBuf;
use std::sync::{Arc, Mutex};
use std::time::Instant;
use cgmath::num_traits::FloatConst;
use image::GenericImageView;
use wgpu::Color;
use wgpu::util::DeviceExt;
use winit::{
dpi::PhysicalSize,
window::Window
};
use winit::dpi::Position;
use comet_colors::LinearRgba;
use comet_ecs::{Component, ComponentSet, Render, Render2D, Transform2D, World};
use comet_log::*;
use comet_math;
use comet_math::{Mat4, Point3, Vec2, Vec3};
use comet_resources::{ResourceManager, texture, Vertex, Texture};
use comet_resources::texture_atlas::TextureRegion;
use crate::camera::{Camera, CameraUniform};
use crate::renderer::Renderer;
pub mod renderer2d;
mod render_pass;
pub struct Projection {
aspect: f32,
@ -49,633 +29,3 @@ impl Projection {
}
}
pub struct Renderer2D<'a> {
surface: wgpu::Surface<'a>,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
size: winit::dpi::PhysicalSize<u32>,
//projection: Projection,
render_pipeline: wgpu::RenderPipeline,
last_frame_time: Instant,
deltatime: f32,
vertex_buffer: wgpu::Buffer,
vertex_data: Vec<Vertex>,
index_buffer: wgpu::Buffer,
index_data: Vec<u16>,
num_indices: u32,
clear_color: Color,
diffuse_texture: texture::Texture,
diffuse_bind_group: wgpu::BindGroup,
resource_manager: ResourceManager,
camera: Camera,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
}
impl<'a> Renderer2D<'a> {
pub async fn new(window: Arc<Window>, clear_color: Option<LinearRgba>) -> Renderer2D<'a> {
let vertex_data: Vec<Vertex> = vec![];
let index_data: Vec<u16> = vec![];
let size = PhysicalSize::<u32>::new(1920, 1080);
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::PRIMARY,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
memory_hints: Default::default(),
},
None, // Trace path
)
.await
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("shader.wgsl").into()),
});
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(&vertex_data),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(&index_data),
usage: wgpu::BufferUsages::INDEX
});
let num_indices = index_data.len() as u32;
let resource_manager = ResourceManager::new();
let diffuse_bytes = include_bytes!(r"../../../resources/textures/comet_icon.png");
let diffuse_texture =
texture::Texture::from_bytes(&device, &queue, diffuse_bytes, "comet_icon.png", false).unwrap();
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
// This should match the filterable field of the
// corresponding Texture entry above.
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
let camera = Camera::new(1.0, Vec2::new(2.0, 2.0), Vec3::new(0.0, 0.0, 0.0));
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("camera_bind_group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&camera_bind_group_layout,
],
push_constant_ranges: &[],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}
};
Self {
surface,
device,
queue,
config,
size,
//projection,
render_pipeline,
last_frame_time: Instant::now(),
deltatime: 0.0,
vertex_buffer,
vertex_data,
index_buffer,
index_data,
num_indices,
clear_color,
diffuse_texture,
diffuse_bind_group,
resource_manager,
camera,
camera_uniform,
camera_buffer,
camera_bind_group,
}
}
pub fn dt(&self) -> f32 {
self.deltatime
}
pub fn config(&self) -> &wgpu::SurfaceConfiguration {
&self.config
}
fn vertex_data_mut(&mut self) -> &mut Vec<Vertex> {
&mut self.vertex_data
}
fn index_data_mut(&mut self) -> &mut Vec<u16> {
&mut self.index_data
}
pub fn get_texture(&self, texture_path: String) -> &TextureRegion {
assert!(self.resource_manager.texture_atlas().textures().contains_key(&texture_path), "Texture not found in atlas");
self.resource_manager.texture_atlas().textures().get(&texture_path).unwrap()
}
fn create_rectangle(&self, width: f32, height: f32) -> Vec<Vertex> {
let (bound_x, bound_y) =
((width/ self.config.width as f32) * 0.5, (height/ self.config.height as f32) * 0.5);
vec![
Vertex :: new ( [-bound_x, bound_y, 0.0], [0.0, 0.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x, -bound_y, 0.0], [0.0, 1.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x, -bound_y, 0.0], [1.0, 1.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x, bound_y, 0.0], [1.0, 0.0], [0.0, 0.0, 0.0, 0.0] )
]
}
pub fn display_atlas(&mut self) {
let atlas = vec![
r"C:\Users\lisk77\Code Sharing\comet-engine\resources\textures\comet-128.png".to_string(),
r"C:\Users\lisk77\Code Sharing\comet-engine\resources\textures\comet-256.png".to_string(),
];
//self.diffuse_texture = Texture::from_image(&self.device, &self.queue, atlas.atlas(), None, false).unwrap();
self.set_texture_atlas(atlas);
let (bound_x, bound_y) =
((self.diffuse_texture.size.width as f32/ self.config.width as f32) * 0.5, (self.diffuse_texture.size.height as f32/ self.config.height as f32) * 0.5);
let vertices: Vec<Vertex> = vec![
Vertex :: new ( [-bound_x, bound_y, 0.0], [0.0, 0.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x, -bound_y, 0.0], [0.0, 1.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x, -bound_y, 0.0], [1.0, 1.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x, bound_y, 0.0], [1.0, 0.0], [0.0, 0.0, 0.0, 0.0] )
];
/*let vertices: Vec<Vertex> = vec![
Vertex :: new ( [-1.0, 1.0, 0.0], [0.0, 0.0] ),
Vertex :: new ( [-1.0, -1.0, 0.0], [0.0, 1.0] ),
Vertex :: new ( [ 1.0, -1.0, 0.0], [1.0, 1.0]) ,
Vertex :: new ( [ 1.0, 1.0, 0.0], [1.0, 0.0] )
];*/
let indices: Vec<u16> = vec![
0, 1, 3,
1, 2, 3
];
self.set_buffers(vertices, indices)
}
pub fn set_texture_atlas(&mut self, paths: Vec<String>) {
self.resource_manager.create_texture_atlas(paths);
self.diffuse_texture = Texture::from_image(&self.device, &self.queue, self.resource_manager.texture_atlas().atlas(), None, false).unwrap();
let texture_bind_group_layout =
self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
// This should match the filterable field of the
// corresponding Texture entry above.
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let diffuse_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&self.diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
self.diffuse_bind_group = diffuse_bind_group;
}
pub fn get_project_root() -> std::io::Result<PathBuf> {
let path = std::env::current_dir()?;
let mut path_ancestors = path.as_path().ancestors();
while let Some(p) = path_ancestors.next() {
let has_cargo =
std::fs::read_dir(p)?
.into_iter()
.any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock"));
if has_cargo {
return Ok(PathBuf::from(p))
}
}
Err(std::io::Error::new(std::io::ErrorKind::NotFound, "Ran out of places to find Cargo.toml"))
}
pub fn initialize_atlas(&mut self) {
let texture_path = "resources/textures/".to_string();
let mut paths: Vec<String> = Vec::new();
for path in std::fs::read_dir(Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\textures").unwrap() {
paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap());
}
self.set_texture_atlas(paths);
}
pub fn set_buffers(&mut self, new_vertex_buffer: Vec<Vertex>, new_index_buffer: Vec<u16>) {
match new_vertex_buffer == self.vertex_data {
true => return,
false => {
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Vertex Buffer"),
contents: bytemuck::cast_slice(&new_vertex_buffer),
usage: wgpu::BufferUsages::VERTEX,
});
self.vertex_data = new_vertex_buffer;
}
}
match new_index_buffer == self.index_data {
true => return,
false => {
self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Index Buffer"),
contents: bytemuck::cast_slice(&new_index_buffer),
usage: wgpu::BufferUsages::INDEX,
});
self.index_data = new_index_buffer.clone();
self.num_indices = new_index_buffer.len() as u32;
}
}
}
pub fn push_to_buffers(&mut self, new_vertex_buffer: &mut Vec<Vertex>, new_index_buffer: &mut Vec<u16>) {
self.vertex_data.append(new_vertex_buffer);
self.index_data.append(new_index_buffer);
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Vertex Buffer"),
contents: bytemuck::cast_slice(&self.vertex_data),
usage: wgpu::BufferUsages::VERTEX,
});
self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Index Buffer"),
contents: bytemuck::cast_slice(&self.index_data),
usage: wgpu::BufferUsages::INDEX,
});
self.num_indices = self.index_data.len() as u32;
}
pub fn clear_buffers(&mut self) {
self.vertex_data = vec![];
self.index_data = vec![];
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Vertex Buffer"),
contents: bytemuck::cast_slice(&self.vertex_data),
usage: wgpu::BufferUsages::VERTEX,
});
self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Index Buffer"),
contents: bytemuck::cast_slice(&self.index_data),
usage: wgpu::BufferUsages::INDEX,
});
self.num_indices = self.index_data.len() as u32;
}
pub fn draw_texture_at(&mut self, texture_path: String, position: Point3) {
let region = self.resource_manager.texture_locations().get(&texture_path).unwrap();
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32/ self.config.width as f32) * 0.5, (dim_y as f32/ self.config.height as f32) * 0.5);
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0] ) ,
Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0] )
];
let buffer_size = self.vertex_data.len() as u16;
let indices: &mut Vec<u16> = &mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
];
self.push_to_buffers(vertices, indices)
}
pub fn render_scene_2d(&mut self, world: &World) {
let entities = world.get_entities_with(ComponentSet::from_ids(vec![Render2D::type_id()]));
let mut vertex_buffer: Vec<Vertex> = Vec::new();
let mut index_buffer: Vec<u16> = Vec::new();
for entity in entities {
let renderer_component = world.get_component::<Render2D>(entity as usize);
let transform_component = world.get_component::<Transform2D>(entity as usize);
if renderer_component.is_visible() {
//renderer.draw_texture_at(renderer_component.get_texture(), Point3::new(transform_component.position().x(), transform_component.position().y(), 0.0));
let mut position = transform_component.position().clone();
position.set_x(position.x() / self.config().width as f32);
position.set_y(position.y() / self.config().height as f32);
let region = self.get_texture(renderer_component.get_texture().to_string());
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32/ self.config().width as f32) * 0.5, (dim_y as f32/ self.config().height as f32) * 0.5);
let buffer_size = vertex_buffer.len() as u16;
vertex_buffer.append(&mut vec![
Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0] ) ,
Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0] )
]);
index_buffer.append(&mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
]);
}
}
self.set_buffers(vertex_buffer, index_buffer);
}
pub fn size(&self) -> PhysicalSize<u32> {
self.size
}
pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
//self.projection.resize(new_size.width, new_size.height);
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn update(&mut self) -> f32 {
let now = Instant::now();
self.deltatime = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds
self.last_frame_time = now;
self.deltatime
}
pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
{
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(self.clear_color),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]);
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.num_indices, 0, 0..1);
}
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
}
impl<'a> Renderer for Renderer2D<'a> {
async fn new(window: Arc<Window>, clear_color: Option<LinearRgba>) -> Renderer2D<'a> {
Self::new(window.clone(), clear_color).await
}
fn size(&self) -> PhysicalSize<u32> {
self.size()
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.resize(new_size)
}
fn update(&mut self) -> f32 {
self.update()
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
self.render()
}
}

View file

@ -0,0 +1,29 @@
use comet_resources::Vertex;
pub struct RenderPassInfo {
shader: &'static str,
vertex_buffer: Vec<Vertex>,
index_buffer: Vec<u16>,
}
impl RenderPassInfo {
pub fn new(shader: &'static str, vertex_buffer: Vec<Vertex>, index_buffer: Vec<u16>) -> Self {
Self {
shader,
vertex_buffer,
index_buffer
}
}
pub fn shader(&self) -> &'static str {
self.shader
}
pub fn vertex_buffer(&self) -> &Vec<Vertex> {
&self.vertex_buffer
}
pub fn index_buffer(&self) -> &Vec<u16> {
&self.index_buffer
}
}

View file

@ -0,0 +1,856 @@
use std::iter;
use std::path::PathBuf;
use std::sync::Arc;
use std::time::Instant;
use wgpu::{Color, ShaderModule};
use wgpu::naga::ShaderStage;
use wgpu::util::DeviceExt;
use winit::dpi::PhysicalSize;
use winit::window::Window;
use comet_colors::LinearRgba;
use comet_ecs::{Component, ComponentSet, Render, Render2D, Transform2D, World};
use comet_log::{debug, info};
use comet_math::{Point3, Vec2, Vec3};
use comet_resources::{texture, graphic_resource_manager::GraphicResorceManager, Texture, Vertex};
use comet_resources::texture_atlas::TextureRegion;
use crate::camera::{Camera, CameraUniform};
use crate::render_pass::RenderPassInfo;
use crate::renderer::Renderer;
pub struct Renderer2D<'a> {
surface: wgpu::Surface<'a>,
device: wgpu::Device,
queue: wgpu::Queue,
config: wgpu::SurfaceConfiguration,
size: winit::dpi::PhysicalSize<u32>,
render_pipeline_layout: wgpu::PipelineLayout,
render_pipeline: wgpu::RenderPipeline,
render_pass: Vec<RenderPassInfo>,
last_frame_time: Instant,
deltatime: f32,
vertex_buffer: wgpu::Buffer,
vertex_data: Vec<Vertex>,
index_buffer: wgpu::Buffer,
index_data: Vec<u16>,
num_indices: u32,
clear_color: Color,
diffuse_texture: texture::Texture,
diffuse_bind_group: wgpu::BindGroup,
graphic_resource_manager: GraphicResorceManager,
camera: Camera,
camera_uniform: CameraUniform,
camera_buffer: wgpu::Buffer,
camera_bind_group: wgpu::BindGroup,
}
impl<'a> Renderer2D<'a> {
pub async fn new(window: Arc<Window>, clear_color: Option<LinearRgba>) -> Renderer2D<'a> {
let vertex_data: Vec<Vertex> = vec![];
let index_data: Vec<u16> = vec![];
let size = PhysicalSize::<u32>::new(1920, 1080);
let instance = wgpu::Instance::new(wgpu::InstanceDescriptor {
backends: wgpu::Backends::PRIMARY,
..Default::default()
});
let surface = instance.create_surface(window).unwrap();
let adapter = instance
.request_adapter(&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::default(),
compatible_surface: Some(&surface),
force_fallback_adapter: false,
})
.await
.unwrap();
let (device, queue) = adapter
.request_device(
&wgpu::DeviceDescriptor {
label: None,
required_features: wgpu::Features::empty(),
required_limits: wgpu::Limits::default(),
memory_hints: Default::default(),
},
None, // Trace path
)
.await
.unwrap();
let surface_caps = surface.get_capabilities(&adapter);
let surface_format = surface_caps
.formats
.iter()
.copied()
.find(|f| f.is_srgb())
.unwrap_or(surface_caps.formats[0]);
let config = wgpu::SurfaceConfiguration {
usage: wgpu::TextureUsages::RENDER_ATTACHMENT,
format: surface_format,
width: size.width,
height: size.height,
present_mode: surface_caps.present_modes[0],
alpha_mode: surface_caps.alpha_modes[0],
view_formats: vec![],
desired_maximum_frame_latency: 2,
};
let shader = device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()),
});
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Vertex Buffer"),
contents: bytemuck::cast_slice(&vertex_data),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Index Buffer"),
contents: bytemuck::cast_slice(&index_data),
usage: wgpu::BufferUsages::INDEX
});
let num_indices = index_data.len() as u32;
let graphic_resource_manager = GraphicResorceManager::new();
let diffuse_bytes = include_bytes!(r"../../../resources/textures/comet_icon.png");
let diffuse_texture =
texture::Texture::from_bytes(&device, &queue, diffuse_bytes, "comet_icon.png", false).unwrap();
let texture_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let diffuse_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
let camera = Camera::new(1.0, Vec2::new(2.0, 2.0), Vec3::new(0.0, 0.0, 0.0));
let mut camera_uniform = CameraUniform::new();
camera_uniform.update_view_proj(&camera);
let camera_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Camera Buffer"),
contents: bytemuck::cast_slice(&[camera_uniform]),
usage: wgpu::BufferUsages::UNIFORM | wgpu::BufferUsages::COPY_DST,
});
let camera_bind_group_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let camera_bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &camera_bind_group_layout,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: camera_buffer.as_entire_binding(),
}],
label: Some("camera_bind_group"),
});
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&camera_bind_group_layout,
],
push_constant_ranges: &[],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
r: 0.1,
g: 0.2,
b: 0.3,
a: 1.0,
}
};
Self {
surface,
device,
queue,
config,
size,
render_pipeline_layout,
render_pipeline,
render_pass: vec![],
last_frame_time: Instant::now(),
deltatime: 0.0,
vertex_buffer,
vertex_data,
index_buffer,
index_data,
num_indices,
clear_color,
diffuse_texture,
diffuse_bind_group,
graphic_resource_manager,
camera,
camera_uniform,
camera_buffer,
camera_bind_group,
}
}
pub fn dt(&self) -> f32 {
self.deltatime
}
pub fn config(&self) -> &wgpu::SurfaceConfiguration {
&self.config
}
pub fn size(&self) -> PhysicalSize<u32> {
self.size
}
pub fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
if new_size.width > 0 && new_size.height > 0 {
//self.projection.resize(new_size.width, new_size.height);
self.size = new_size;
self.config.width = new_size.width;
self.config.height = new_size.height;
self.surface.configure(&self.device, &self.config);
}
}
pub fn add_render_pass(&mut self, render_pass_info: RenderPassInfo) {
self.render_pass.push(render_pass_info);
}
/// A function that loads a shader from the resources/shaders folder given the full name of the shader file.
pub fn load_shader(&mut self, shader_stage: Option<ShaderStage>, file_name: &str) {
self.graphic_resource_manager.load_shader(shader_stage, ((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + file_name.clone()).as_str(), &self.device).unwrap();
info!("Shader ({}) loaded successfully", file_name);
}
/// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded.
pub fn apply_shader(&mut self, shader: &str) {
let shader_module = self.graphic_resource_manager.get_shader(((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + shader).as_str()).unwrap();
let texture_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let camera_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let render_pipeline_layout =
self.device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&camera_bind_group_layout,
],
push_constant_ranges: &[],
});
self.render_pipeline = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader_module,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader_module,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: self.config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
info!("Applied shader ({})!", shader);
}
/// A function to revert back to the base shader of the `Renderer2D`
pub fn apply_base_shader(&mut self) {
let shader = self.device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some("Shader"),
source: wgpu::ShaderSource::Wgsl(include_str!("base2d.wgsl").into()),
});
let texture_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let camera_bind_group_layout = self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
}],
label: Some("camera_bind_group_layout"),
});
let render_pipeline_layout =
self.device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Render Pipeline Layout"),
bind_group_layouts: &[
&texture_bind_group_layout,
&camera_bind_group_layout,
],
push_constant_ranges: &[],
});
self.render_pipeline = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: &shader,
entry_point: "vs_main",
buffers: &[Vertex::desc()],
compilation_options: Default::default(),
},
fragment: Some(wgpu::FragmentState {
module: &shader,
entry_point: "fs_main",
targets: &[Some(wgpu::ColorTargetState {
format: self.config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
compilation_options: Default::default(),
}),
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
polygon_mode: wgpu::PolygonMode::Fill,
unclipped_depth: false,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
multiview: None,
cache: None,
});
info!("Applied base shader!");
}
/// An interface for getting the location of the texture in the texture atlas.
pub fn get_texture_region(&self, texture_path: String) -> &TextureRegion {
assert!(self.graphic_resource_manager.texture_atlas().textures().contains_key(&texture_path), "Texture not found in atlas");
self.graphic_resource_manager.texture_atlas().textures().get(&texture_path).unwrap()
}
fn create_rectangle(&self, width: f32, height: f32) -> Vec<Vertex> {
let (bound_x, bound_y) =
((width/ self.config.width as f32) * 0.5, (height/ self.config.height as f32) * 0.5);
vec![
Vertex :: new ( [-bound_x, bound_y, 0.0], [0.0, 0.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x, -bound_y, 0.0], [0.0, 1.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x, -bound_y, 0.0], [1.0, 1.0], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x, bound_y, 0.0], [1.0, 0.0], [0.0, 0.0, 0.0, 0.0] )
]
}
/// A function that allows you to set the texture atlas with a list of paths to the textures.
/// The old texture atlas will be replaced with the new one.
pub fn set_texture_atlas(&mut self, paths: Vec<String>) {
self.graphic_resource_manager.create_texture_atlas(paths);
self.diffuse_texture = Texture::from_image(&self.device, &self.queue, self.graphic_resource_manager.texture_atlas().atlas(), None, false).unwrap();
let texture_bind_group_layout =
self.device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
entries: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
multisampled: false,
view_dimension: wgpu::TextureViewDimension::D2,
sample_type: wgpu::TextureSampleType::Float { filterable: true },
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
],
label: Some("texture_bind_group_layout"),
});
let diffuse_bind_group = self.device.create_bind_group(&wgpu::BindGroupDescriptor {
layout: &texture_bind_group_layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&self.diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&self.diffuse_texture.sampler),
},
],
label: Some("diffuse_bind_group"),
});
self.diffuse_bind_group = diffuse_bind_group;
}
fn get_project_root() -> std::io::Result<PathBuf> {
let path = std::env::current_dir()?;
let mut path_ancestors = path.as_path().ancestors();
while let Some(p) = path_ancestors.next() {
let has_cargo =
std::fs::read_dir(p)?
.into_iter()
.any(|p| p.unwrap().file_name() == std::ffi::OsString::from("Cargo.lock"));
if has_cargo {
return Ok(PathBuf::from(p))
}
}
Err(std::io::Error::new(std::io::ErrorKind::NotFound, "Ran out of places to find Cargo.toml"))
}
/// A function that takes all of the textures inside of the resources/textures folder and creates a texture atlas from them.
pub fn initialize_atlas(&mut self) {
let texture_path = "resources/textures/".to_string();
let mut paths: Vec<String> = Vec::new();
for path in std::fs::read_dir(Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\textures").unwrap() {
paths.push(texture_path.clone() + path.unwrap().file_name().to_str().unwrap());
}
self.set_texture_atlas(paths);
}
/// A function that clears the buffers and sets the vertex and index buffer of the `Renderer2D` with the given data.
fn set_buffers(&mut self, new_vertex_buffer: Vec<Vertex>, new_index_buffer: Vec<u16>) {
match new_vertex_buffer == self.vertex_data {
true => return,
false => {
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Vertex Buffer"),
contents: bytemuck::cast_slice(&new_vertex_buffer),
usage: wgpu::BufferUsages::VERTEX,
});
self.vertex_data = new_vertex_buffer;
}
}
match new_index_buffer == self.index_data {
true => return,
false => {
self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Index Buffer"),
contents: bytemuck::cast_slice(&new_index_buffer),
usage: wgpu::BufferUsages::INDEX,
});
self.index_data = new_index_buffer.clone();
self.num_indices = new_index_buffer.len() as u32;
}
}
}
/// A function that adds data to the already existing vertex and index buffers of the `Renderer2D`.
fn push_to_buffers(&mut self, new_vertex_buffer: &mut Vec<Vertex>, new_index_buffer: &mut Vec<u16>) {
self.vertex_data.append(new_vertex_buffer);
self.index_data.append(new_index_buffer);
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Vertex Buffer"),
contents: bytemuck::cast_slice(&self.vertex_data),
usage: wgpu::BufferUsages::VERTEX,
});
self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Index Buffer"),
contents: bytemuck::cast_slice(&self.index_data),
usage: wgpu::BufferUsages::INDEX,
});
self.num_indices = self.index_data.len() as u32;
}
/// A function that clears the vertex and index buffers of the `Renderer2D`.
fn clear_buffers(&mut self) {
self.vertex_data = vec![];
self.index_data = vec![];
self.vertex_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Vertex Buffer"),
contents: bytemuck::cast_slice(&self.vertex_data),
usage: wgpu::BufferUsages::VERTEX,
});
self.index_buffer = self.device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some("Updated Index Buffer"),
contents: bytemuck::cast_slice(&self.index_data),
usage: wgpu::BufferUsages::INDEX,
});
self.num_indices = self.index_data.len() as u32;
}
/// A function to just draw a textured quad at a given position.
pub fn draw_texture_at(&mut self, texture_path: String, position: Point3) {
let region = self.graphic_resource_manager.texture_locations().get(&texture_path).unwrap();
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32/ self.config.width as f32) * 0.5, (dim_y as f32/ self.config.height as f32) * 0.5);
let vertices: &mut Vec<Vertex> = &mut vec![
Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0 + position.z()], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0] ) ,
Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0 + position.z()], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0] )
];
let buffer_size = self.vertex_data.len() as u16;
let indices: &mut Vec<u16> = &mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
];
self.push_to_buffers(vertices, indices)
}
/// A function to draw text at a given position.
pub fn draw_text_at(&mut self, text: &str, position: Point3) {
todo!()
}
/// A function to automatically render all the entities of the `World` struct.
/// The entities must have the `Render2D` and `Transform2D` components to be rendered as well as set visible.
pub fn render_scene_2d(&mut self, world: &World) {
let entities = world.get_entities_with(ComponentSet::from_ids(vec![Render2D::type_id()]));
let mut vertex_buffer: Vec<Vertex> = Vec::new();
let mut index_buffer: Vec<u16> = Vec::new();
for entity in entities {
let renderer_component = world.get_component::<Render2D>(entity as usize);
let transform_component = world.get_component::<Transform2D>(entity as usize);
if renderer_component.is_visible() {
//renderer.draw_texture_at(renderer_component.get_texture(), Point3::new(transform_component.position().x(), transform_component.position().y(), 0.0));
let mut position = transform_component.position().clone();
position.set_x(position.x() / self.config().width as f32);
position.set_y(position.y() / self.config().height as f32);
let region = self.get_texture_region(renderer_component.get_texture().to_string());
let (dim_x, dim_y) = region.dimensions();
let (bound_x, bound_y) =
((dim_x as f32/ self.config().width as f32) * 0.5, (dim_y as f32/ self.config().height as f32) * 0.5);
let buffer_size = vertex_buffer.len() as u16;
vertex_buffer.append(&mut vec![
Vertex :: new ( [-bound_x + position.x(), bound_y + position.y(), 0.0], [region.x0(), region.y0()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [-bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x0(), region.y1()], [0.0, 0.0, 0.0, 0.0] ),
Vertex :: new ( [ bound_x + position.x(), -bound_y + position.y(), 0.0], [region.x1(), region.y1()], [0.0, 0.0, 0.0, 0.0] ) ,
Vertex :: new ( [ bound_x + position.x(), bound_y + position.y(), 0.0], [region.x1(), region.y0()], [0.0, 0.0, 0.0, 0.0] )
]);
index_buffer.append(&mut vec![
0 + buffer_size, 1 + buffer_size, 3 + buffer_size,
1 + buffer_size, 2 + buffer_size, 3 + buffer_size
]);
}
}
self.set_buffers(vertex_buffer, index_buffer);
}
pub fn update(&mut self) -> f32 {
let now = Instant::now();
self.deltatime = now.duration_since(self.last_frame_time).as_secs_f32(); // Time delta in seconds
self.last_frame_time = now;
self.deltatime
}
pub fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
let output = self.surface.get_current_texture()?;
let view = output
.texture
.create_view(&wgpu::TextureViewDescriptor::default());
let mut encoder = self
.device
.create_command_encoder(&wgpu::CommandEncoderDescriptor {
label: Some("Render Encoder"),
});
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Clear(self.clear_color),
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]);
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.num_indices, 0, 0..1);
if self.render_pass.len() > 0 {
for (i, pass_info) in self.render_pass.iter().enumerate() {
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some(format!("Custom Render Pass {}", i).as_str()),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Load,
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
}
}
self.queue.submit(iter::once(encoder.finish()));
output.present();
Ok(())
}
}
impl<'a> Renderer for Renderer2D<'a> {
async fn new(window: Arc<Window>, clear_color: Option<LinearRgba>) -> Renderer2D<'a> {
Self::new(window, clear_color).await
}
fn size(&self) -> PhysicalSize<u32> {
self.size()
}
fn resize(&mut self, new_size: winit::dpi::PhysicalSize<u32>) {
self.resize(new_size)
}
fn update(&mut self) -> f32 {
self.update()
}
fn render(&mut self) -> Result<(), wgpu::SurfaceError> {
self.render()
}
}

View file

@ -7,7 +7,7 @@ edition = "2021"
comet_log = { path = "../comet_log" }
chrono = "0.4.38"
wgpu = { version = "22.0"}
wgpu = { version = "22.0", features = ["spirv"] }
anyhow = "1.0"
tobj = { version = "3.2", default-features = false, features = ["async"]}
bytemuck = { version = "1.16", features = [ "derive" ] }

View file

@ -0,0 +1,230 @@
use std::{
collections::HashMap, path::Path
};
use wgpu::{naga, Device, FilterMode, Queue, ShaderModule, TextureFormat, TextureUsages};
use wgpu::naga::back::{glsl, hlsl};
use wgpu::naga::ShaderStage;
use crate::{texture, Texture};
use crate::texture_atlas::{TextureAtlas, TextureRegion};
pub struct GraphicResorceManager {
texture_atlas: TextureAtlas,
data_files: HashMap<String, String>,
shaders: HashMap<String, ShaderModule>
}
impl GraphicResorceManager {
pub fn new() -> Self {
Self {
texture_atlas: TextureAtlas::empty(),
data_files: HashMap::new(),
shaders: HashMap::new()
}
}
pub fn texture_atlas(&self) -> &TextureAtlas {
&self.texture_atlas
}
pub fn texture_locations(&self) -> &HashMap<String, TextureRegion> {
&self.texture_atlas.textures()
}
pub fn data_files(&self) -> &HashMap<String, String> {
&self.data_files
}
pub fn set_texture_atlas(&mut self, texture_atlas: TextureAtlas) {
self.texture_atlas = texture_atlas;
// This is just for testing purposes
//self.texture_locations.insert("normal_comet.png".to_string(), ([0,0], [15,15]));
//self.texture_locations.insert("green_comet.png".to_string(), ([0,15], [15,31]));
}
pub fn create_texture_atlas(&mut self, paths: Vec<String>) {
self.texture_atlas = TextureAtlas::from_texture_paths(paths)
}
pub fn load_string(&self, file_name: &str) -> anyhow::Result<String> {
let path = Path::new(std::env::var("OUT_DIR")?.as_str())
.join("res")
.join(file_name);
let txt = std::fs::read_to_string(path)?;
Ok(txt)
}
pub fn load_binary(&self, file_name: &str) -> anyhow::Result<Vec<u8>> {
let path = Path::new(std::env::var("OUT_DIR")?.as_str())
.join("res")
.join(file_name);
let data = std::fs::read(path)?;
Ok(data)
}
pub fn load_texture(
&self,
file_name: &str,
is_normal_map: bool,
device: &wgpu::Device,
queue: &wgpu::Queue,
) -> anyhow::Result<texture::Texture> {
let data = self.load_binary(file_name)?;
texture::Texture::from_bytes(device, queue, &data, file_name, is_normal_map)
}
/// `file_name` is the full name, so with the extension
/// `shader_stage` is only needed if it is a GLSL shader, so default to None if it isn't GLSL
pub fn load_shader(
&mut self,
shader_stage: Option<ShaderStage>,
file_name: &str,
device: &Device
) -> anyhow::Result<()> {
let shader_source = self.load_string(file_name)?;
let module = match file_name.split('.').last() {
Some ("wgsl") => {
device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some(file_name.clone()),
source: wgpu::ShaderSource::Wgsl(shader_source.into())
})
},
Some("glsl") => {
if let Some(stage) = shader_stage {
device.create_shader_module(wgpu::ShaderModuleDescriptor {
label: Some(file_name.clone()),
source: wgpu::ShaderSource::Glsl {
shader: shader_source.into(),
stage,
defines: naga::FastHashMap::default()
}
})
}
else {
return Err(anyhow::anyhow!("GLSL shader needs a stage"))
}
}
_ => return Err(anyhow::anyhow!("Unsupported shader type")),
};
self.shaders.insert(file_name.to_string(), module);
Ok(())
}
pub fn get_shader(&self, shader: &str) -> Option<&ShaderModule> {
self.shaders.get(shader)
}
/*pub async fn load_model(
&self,
file_name: &str,
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &wgpu::BindGroupLayout,
) -> anyhow::Result<model::Model> {
let obj_text = self.load_string(file_name).await?;
let obj_cursor = Cursor::new(obj_text);
let mut obj_reader = BufReader::new(obj_cursor);
let (models, obj_materials) = tobj::load_obj_buf_async(
&mut obj_reader,
&tobj::LoadOptions {
triangulate: true,
single_index: true,
..Default::default()
},
|p| async move {
let mat_text = self.load_string(&p).await.unwrap();
tobj::load_mtl_buf(&mut BufReader::new(Cursor::new(mat_text)))
},
)
.await?;
let mut materials = Vec::new();
for m in obj_materials? {
let diffuse_texture = self.load_texture(&m.diffuse_texture, false, device, queue).await?;
let normal_texture = self.load_texture(&m.normal_texture, true, device, queue).await?;
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
layout,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&diffuse_texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&diffuse_texture.sampler),
},
],
label: None,
});
materials.push(model::Material {
name: m.name,
diffuse_texture,
bind_group,
});
}
let meshes = models
.into_iter()
.map(|m| {
let vertices = (0..m.mesh.positions.len() / 3)
.map(|i| {
if m.mesh.normals.is_empty() {
model::ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
],
tex_coords: [m.mesh.texcoords[i * 2], 1.0 - m.mesh.texcoords[i * 2 + 1]],
normal: [0.0, 0.0, 0.0],
}
} else {
model::ModelVertex {
position: [
m.mesh.positions[i * 3],
m.mesh.positions[i * 3 + 1],
m.mesh.positions[i * 3 + 2],
],
tex_coords: [m.mesh.texcoords[i * 2], 1.0 - m.mesh.texcoords[i * 2 + 1]],
normal: [
m.mesh.normals[i * 3],
m.mesh.normals[i * 3 + 1],
m.mesh.normals[i * 3 + 2],
],
}
}
})
.collect::<Vec<_>>();
let vertex_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Vertex Buffer", file_name)),
contents: bytemuck::cast_slice(&vertices),
usage: wgpu::BufferUsages::VERTEX,
});
let index_buffer = device.create_buffer_init(&wgpu::util::BufferInitDescriptor {
label: Some(&format!("{:?} Index Buffer", file_name)),
contents: bytemuck::cast_slice(&m.mesh.indices),
usage: wgpu::BufferUsages::INDEX,
});
model::Mesh {
name: file_name.to_string(),
vertex_buffer,
index_buffer,
num_elements: m.mesh.indices.len() as u32,
material: m.mesh.material_id.unwrap_or(0),
}
})
.collect::<Vec<_>>();
Ok(model::Model { meshes, materials })
}*/
}

View file

@ -6,6 +6,8 @@ pub mod resources;
pub mod texture;
pub mod vertex;
pub mod texture_atlas;
pub mod graphic_resource_manager;
mod material;
/*use std::io::{BufReader, Cursor};
use wgpu::util::DeviceExt;

View file

@ -0,0 +1,8 @@
use crate::texture;
pub struct Material {
pub name: String,
pub diffuse_texture: texture::Texture,
pub normal_texture: texture::Texture,
pub bind_group: wgpu::BindGroup,
}

View file

@ -0,0 +1,39 @@
struct CameraUniform {
view_proj: mat4x4<f32>,
};
@group(1) @binding(0)
var<uniform> camera: CameraUniform;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) color: vec4<f32>,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) color: vec4<f32>,
}
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.color = model.color;
out.clip_position = camera.view_proj * vec4<f32>(model.position, 1.0);
return out;
}
@group(0) @binding(0)
var t_diffuse: texture_2d<f32>;
@group(0) @binding(1)
var s_diffuse: sampler;
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
let color = textureSample(t_diffuse, s_diffuse, in.tex_coords);
return vec4<f32>((color.r + color.g + color.b) / 3.0, (color.r + color.g + color.b) / 3.0, (color.r + color.g + color.b) / 3.0, color.a);
}

View file

@ -0,0 +1,68 @@
// Vertex shader
struct CameraUniform {
view_proj: mat4x4<f32>,
};
@group(1) @binding(0) // 1.
var<uniform> camera: CameraUniform;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) color: vec4<f32>,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) color: vec4<f32>,
}
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.color = model.color;
out.clip_position = camera.view_proj * vec4<f32>(model.position, 1.0);
return out;
}
@group(0) @binding(0)
var t_diffuse: texture_2d<f32>; // Diffuse texture
@group(0) @binding(1)
var s_diffuse: sampler; // Sampler for the texture
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
// Sample the texture using the input texture coordinates
var texColor: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
// Apply CRT curvature effect (distortion)
let center = vec2<f32>(0.5, 0.5); // center of the screen
let dist = distance(in.tex_coords, center); // Distance from the center
let curvature = 0.1; // Adjust for more or less curvature
var distorted_uv = in.tex_coords + (in.tex_coords - center) * curvature * dist;
// Apply chromatic aberration by slightly offsetting the UV coordinates
let redOffset = 0.005;
let greenOffset = 0.0;
let blueOffset = -0.005;
let redColor = textureSample(t_diffuse, s_diffuse, distorted_uv + vec2<f32>(redOffset, 0.0));
let greenColor = textureSample(t_diffuse, s_diffuse, distorted_uv + vec2<f32>(greenOffset, 0.0));
let blueColor = textureSample(t_diffuse, s_diffuse, distorted_uv + vec2<f32>(blueOffset, 0.0));
// Combine chromatic aberration with the original color
texColor.r = redColor.r;
texColor.g = greenColor.g;
texColor.b = blueColor.b;
// Apply scanline effect (darken even rows for scanlines)
let scanlineEffect = 0.1 * (sin(in.clip_position.y * 0.3) + 1.0); // Horizontal scanlines
texColor.r *= scanlineEffect; // Apply scanline effect to red channel
texColor.g *= scanlineEffect; // Apply scanline effect to green channel
texColor.b *= scanlineEffect; // Apply scanline effect to blue channel
return texColor;
}

View file

@ -0,0 +1,89 @@
// Vertex shader
struct CameraUniform {
view_proj: mat4x4<f32>,
};
@group(1) @binding(0) // 1.
var<uniform> camera: CameraUniform;
struct VertexInput {
@location(0) position: vec3<f32>,
@location(1) tex_coords: vec2<f32>,
@location(2) color: vec4<f32>,
}
struct VertexOutput {
@builtin(position) clip_position: vec4<f32>,
@location(0) tex_coords: vec2<f32>,
@location(1) color: vec4<f32>,
}
@vertex
fn vs_main(
model: VertexInput,
) -> VertexOutput {
var out: VertexOutput;
out.tex_coords = model.tex_coords;
out.color = model.color;
out.clip_position = camera.view_proj * vec4<f32>(model.position, 1.0);
return out;
}
@group(0) @binding(0)
var t_diffuse: texture_2d<f32>; // Diffuse texture
@group(0) @binding(1)
var s_diffuse: sampler; // Sampler for the texture
// A simple pseudo-random number generator (using fragment coordinates)
fn rand2D(p: vec2<f32>) -> f32 {
let s = sin(dot(p, vec2<f32>(12.9898, 78.233))); // Pseudorandom calculation
return fract(s * 43758.5453); // Return value between 0 and 1
}
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
// Sample the texture using the input texture coordinates
var texColor: vec4<f32> = textureSample(t_diffuse, s_diffuse, in.tex_coords);
// Random horizontal displacement for glitching effect
let glitchStrength = 0.03; // How far the texture will "glitch"
let glitchAmount = rand2D(in.tex_coords * 100.0); // Use a different scale for more variation
var displacedUV = in.tex_coords + vec2<f32>(glitchAmount * glitchStrength, 0.0);
// Sample the texture at the displaced position
texColor = textureSample(t_diffuse, s_diffuse, displacedUV);
// Apply random color flickering
let colorFlickerAmount = rand2D(in.tex_coords * 50.0); // More frequency for faster flickering
texColor.r *= mix(0.7, 1.3, colorFlickerAmount); // Randomly adjust red channel brightness
texColor.g *= mix(0.7, 1.3, colorFlickerAmount); // Randomly adjust green channel brightness
texColor.b *= mix(0.7, 1.3, colorFlickerAmount); // Randomly adjust blue channel brightness
// Occasionally "flicker" the texture to simulate complete signal loss
let flickerChance = rand2D(in.tex_coords * 200.0); // Different scale for randomness
if (flickerChance < 0.05) { // 5% chance to completely "flicker" out
texColor.r = 0.0; // Turn red channel to black
texColor.g = 0.0; // Turn green channel to black
texColor.b = 0.0; // Turn blue channel to black
}
// Apply random horizontal offset to simulate screen tearing
let tearEffect = rand2D(in.tex_coords * 25.0); // Vary this value for different effects
if (tearEffect < 0.15) {
texColor.r = 1.0; // Simulate red "tear"
texColor.g = 0.0; // No green in the tear
texColor.b = 0.0; // No blue in the tear
} else if (tearEffect < 0.3) {
texColor.r = 0.0; // No red in the tear
texColor.g = 1.0; // Simulate green "tear"
texColor.b = 0.0; // No blue in the tear
}
// Optionally, you can add a "flickering noise" layer for additional effect
let noiseAmount = rand2D(in.tex_coords * 500.0); // Highly random noise for flickering
texColor.r += noiseAmount * 0.1; // Add small amount of random noise to red channel
texColor.g += noiseAmount * 0.1; // Add small amount of random noise to green channel
texColor.b += noiseAmount * 0.1; // Add small amount of random noise to blue channel
// Return the altered texture color
return texColor;
}

View file

@ -1,9 +1,10 @@
use std::ops::Deref;
use comet::{
app::{
App,
ApplicationType::*
},
renderer::Renderer2D,
renderer::renderer2d::Renderer2D,
ecs::{
Render2D,
Transform2D,
@ -18,6 +19,27 @@ use comet::{
use winit_input_helper::WinitInputHelper;
use comet_input::input_handler::InputHandler;
#[derive(Debug, Clone)]
struct GameState {
running: bool
}
impl GameState {
pub fn new() -> Self {
Self {
running: true
}
}
pub fn is_running(&self) -> bool {
self.running
}
pub fn set_running(&mut self, running: bool) {
self.running = running;
}
}
fn update_position(input: WinitInputHelper, transform: &mut Transform2D, dt: f32) {
let mut direction = Vec2::ZERO;
let previous = transform.position().clone();
@ -43,14 +65,28 @@ fn update_position(input: WinitInputHelper, transform: &mut Transform2D, dt: f32
let displacement = normalized_dir * 777.7 * dt;
transform.translate(displacement);
}
}
if (transform.position().as_vec() - previous.as_vec()).x() > 13.0 {
debug!("Actual Displacement: {:?}", transform.position().as_vec() - previous.as_vec());
fn handle_input(app: &mut App, dt: f32) {
if app.key_pressed(Key::NumpadAdd) { debug!("pressed +"); app.set_update_rate(120); }
if app.key_pressed(Key::Minus) { app.set_update_rate(60); }
if app.key_pressed(Key::KeyQ) { app.quit() }
if app.key_pressed(Key::KeyE) { app.world_mut().get_component_mut::<Transform2D>(0).translate([0f32,0f32].into()) }
if app.key_held(Key::KeyW)
|| app.key_held(Key::KeyA)
|| app.key_held(Key::KeyS)
|| app.key_held(Key::KeyD)
{
update_position(app.input_manager().clone(), app.world_mut().get_component_mut::<Transform2D>(0), dt);
}
}
fn setup(app: &mut App, renderer: &mut Renderer2D) {
renderer.initialize_atlas();
renderer.load_shader(None, "blacknwhite.wgsl");
renderer.load_shader(None, "crt.wgsl");
renderer.load_shader(None, "glitch.wgsl");
renderer.apply_shader("glitch.wgsl");
let world = app.world_mut();
world.register_component::<Render2D>();
@ -66,7 +102,7 @@ fn setup(app: &mut App, renderer: &mut Renderer2D) {
let transform = world.get_component_mut::<Transform2D>(id as usize);
transform.translate(Vec2::X*5.0);
world.add_component(id as usize, renderer2d);
// world.add_component(id as usize, renderer2d);
/*let rectangle2d = Rectangle2D::new(*tranform.position(), Vec2::new(0.1, 0.1));
world.add_component(id as usize, rectangle2d);
@ -80,23 +116,16 @@ fn setup(app: &mut App, renderer: &mut Renderer2D) {
}
fn update(app: &mut App, renderer: &mut Renderer2D, dt: f32) {
if app.key_pressed(Key::Escape) { app.quit() }
if app.key_pressed(Key::KeyP) {
if app.dt() == f32::INFINITY { app.set_update_rate(60) }
else {
app.set_update_rate(0);
}
}
if app.key_pressed(Key::KeyE) { app.world_mut().get_component_mut::<Transform2D>(0).translate([0f32,0f32].into()) }
if app.key_held(Key::KeyW)
|| app.key_held(Key::KeyA)
|| app.key_held(Key::KeyS)
|| app.key_held(Key::KeyD)
{
update_position(app.input_manager().clone(), app.world_mut().get_component_mut::<Transform2D>(0), dt);
let is_running = app.game_state::<GameState>().map(|gs| gs.is_running()).unwrap_or(false);
match is_running {
true => handle_input(app, dt),
false => {}
}
let mut transform = app.world_mut().get_component_mut::<Transform2D>(0);
if app.key_pressed(Key::KeyP) { app.game_state_mut::<GameState>().map(|gs| gs.set_running(!gs.is_running())); }
if app.key_pressed(Key::KeyC) { renderer.apply_shader("blacknwhite.wgsl"); }
if app.key_pressed(Key::KeyR) { renderer.apply_base_shader(); }
renderer.render_scene_2d(app.world());
}
@ -106,6 +135,7 @@ fn main() {
.with_title("Comet App")
.with_icon(r"resources/textures/comet_icon.png")
.with_size(1920, 1080)
.with_game_state(GameState::new())
.run::<Renderer2D>(setup, update)
;
}