mirror of
https://github.com/lisk77/comet.git
synced 2025-10-23 21:38:50 +00:00
fix: some things are outdated for some reason...
This commit is contained in:
parent
5456d2a1d7
commit
2654a9fdc9
11 changed files with 431 additions and 44 deletions
|
|
@ -12,4 +12,4 @@ pub mod matrix;
|
|||
pub mod quaternion;
|
||||
pub mod bezier;
|
||||
pub mod easings;
|
||||
mod noise;
|
||||
pub mod noise;
|
||||
|
|
@ -1,4 +1,14 @@
|
|||
use rand::Rng;
|
||||
use rand::{Rng, SeedableRng};
|
||||
use comet_log::debug;
|
||||
use crate::utilities::{lerp, lerp2, PI};
|
||||
use crate::{dot, InnerSpace, Vec2};
|
||||
|
||||
// TODO
|
||||
// Make noise struct keep their generated noise
|
||||
// Create noise trait as a common interface for all noise types
|
||||
// Use noise trait to let the generated noise be outputed in different ways like images or Vec<f32>
|
||||
|
||||
|
||||
|
||||
/// The WhiteNoise struct works a factory for generating white noise, given the size of the texture.
|
||||
pub struct WhiteNoise {
|
||||
|
|
@ -29,11 +39,298 @@ impl WhiteNoise {
|
|||
let mut rng = rand::rng();
|
||||
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
||||
|
||||
for _ in 0..self.size.0 * self.size.1 {
|
||||
let dot_vec2 = Vec2::new(12.9898, 78.233);
|
||||
|
||||
for i in 0..self.size.0 * self.size.1 {
|
||||
noise.push(rng.random_range(0.0..1.0));
|
||||
//noise.push(((dot(&Vec2::new(x,y), &dot_vec2)).sin() * 43758.5453).fract());
|
||||
}
|
||||
|
||||
noise
|
||||
}
|
||||
}
|
||||
|
||||
pub struct PerlinNoise {
|
||||
size: (usize, usize),
|
||||
frequency: f64,
|
||||
seed: u32,
|
||||
}
|
||||
|
||||
impl PerlinNoise {
|
||||
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
|
||||
Self {
|
||||
size: (width, height),
|
||||
frequency,
|
||||
seed,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn set_width(&mut self, width: usize) {
|
||||
self.size.0 = width;
|
||||
}
|
||||
|
||||
pub fn set_height(&mut self, height: usize) {
|
||||
self.size.1 = height;
|
||||
}
|
||||
|
||||
pub fn set_size(&mut self, width: usize, height: usize) {
|
||||
self.size = (width, height);
|
||||
}
|
||||
|
||||
pub fn set_frequency(&mut self, frequency: f64) {
|
||||
self.frequency = frequency;
|
||||
}
|
||||
|
||||
pub fn set_seed(&mut self, seed: u32) {
|
||||
self.seed = seed;
|
||||
}
|
||||
|
||||
/// Generates Perlin noise as a `Vec<f32>`. Size of the vector is `width * height`.
|
||||
pub fn generate(&self) -> Vec<f32> {
|
||||
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
||||
|
||||
for y in 0..self.size.1 {
|
||||
for x in 0..self.size.0 {
|
||||
let nx = x as f64 / self.size.0 as f64;
|
||||
let ny = y as f64 / self.size.1 as f64;
|
||||
let value = self.perlin(nx * self.frequency, ny * self.frequency);
|
||||
noise.push(((value+1.0) * 0.5));
|
||||
}
|
||||
}
|
||||
|
||||
noise
|
||||
}
|
||||
|
||||
/// Generates Perlin noise with multiple octaves as a `Vec<f32>`.
|
||||
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
|
||||
let mut noise = vec![0.0; self.size.0 * self.size.1];
|
||||
let mut amplitude = 1.0;
|
||||
let mut frequency = self.frequency;
|
||||
let mut max_value = 0.0; // Used for normalization
|
||||
|
||||
for _ in 0..octaves {
|
||||
for y in 0..self.size.1 {
|
||||
for x in 0..self.size.0 {
|
||||
let nx = x as f64 / self.size.0 as f64;
|
||||
let ny = y as f64 / self.size.1 as f64;
|
||||
noise[y * self.size.0 + x] += self.perlin(nx * frequency, ny * frequency) as f32 * amplitude as f32;
|
||||
}
|
||||
}
|
||||
max_value += amplitude;
|
||||
amplitude *= persistence; // Reduce amplitude for next octave
|
||||
frequency *= 2.0; // Double frequency for next octave
|
||||
}
|
||||
|
||||
// Normalize the noise to the range [0, 1]
|
||||
noise.iter_mut().for_each(|value| *value /= max_value as f32);
|
||||
|
||||
noise.iter_mut().for_each(|value| *value = (*value + 1.0) * 0.5);
|
||||
|
||||
noise
|
||||
}
|
||||
|
||||
|
||||
/// A raw Perlin noise function implementation.
|
||||
fn perlin(&self, x: f64, y: f64) -> f32 {
|
||||
let xi = x.floor() as i32 & 255;
|
||||
let yi = y.floor() as i32 & 255;
|
||||
|
||||
let xf = x - x.floor();
|
||||
let yf = y - y.floor();
|
||||
|
||||
let u = Self::fade(xf);
|
||||
let v = Self::fade(yf);
|
||||
|
||||
let a = self.permutation(xi) + yi;
|
||||
let b = self.permutation(xi + 1) + yi;
|
||||
|
||||
let aa = self.permutation(a);
|
||||
let ab = self.permutation(a + 1);
|
||||
let ba = self.permutation(b);
|
||||
let bb = self.permutation(b + 1);
|
||||
|
||||
let x1 = lerp(u as f32, Self::grad(self.permutation(aa), xf, yf) as f32, Self::grad(self.permutation(ba), xf - 1.0, yf) as f32);
|
||||
let x2 = lerp(u as f32, Self::grad(self.permutation(ab), xf, yf - 1.0) as f32, Self::grad(self.permutation(bb), xf - 1.0, yf - 1.0) as f32);
|
||||
|
||||
lerp(v as f32, x1, x2)
|
||||
}
|
||||
|
||||
fn fade(t: f64) -> f64 {
|
||||
t * t * t * (t * (t * 6.0 - 15.0) + 10.0)
|
||||
}
|
||||
|
||||
fn lerp(t: f64, a: f64, b: f64) -> f64 {
|
||||
a + t * (b - a)
|
||||
}
|
||||
|
||||
fn grad(hash: i32, x: f64, y: f64) -> f64 {
|
||||
let h = hash & 3;
|
||||
let u = if h & 2 == 0 { x } else { -x };
|
||||
let v = if h & 1 == 0 { y } else { -y };
|
||||
u + v
|
||||
}
|
||||
|
||||
fn permutation(&self, value: i32) -> i32 {
|
||||
const P: [i32; 256] = [
|
||||
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240,
|
||||
21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,
|
||||
237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
|
||||
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
|
||||
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
|
||||
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206,
|
||||
59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153,
|
||||
101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218,
|
||||
246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
|
||||
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
|
||||
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
|
||||
];
|
||||
|
||||
P[((value ^ self.seed as i32) & 255) as usize]
|
||||
}
|
||||
}
|
||||
|
||||
pub struct ValueNoise {
|
||||
size: (usize, usize),
|
||||
frequency: f64,
|
||||
seed: u32,
|
||||
}
|
||||
|
||||
impl ValueNoise {
|
||||
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
|
||||
Self {
|
||||
size: (width, height),
|
||||
frequency,
|
||||
seed,
|
||||
}
|
||||
}
|
||||
|
||||
fn permutation(&self, value: i32) -> i32 {
|
||||
const P: [i32; 256] = [
|
||||
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240,
|
||||
21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,
|
||||
237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
|
||||
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
|
||||
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
|
||||
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206,
|
||||
59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153,
|
||||
101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218,
|
||||
246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
|
||||
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
|
||||
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
|
||||
];
|
||||
|
||||
P[((value ^ self.seed as i32) & 255) as usize]
|
||||
}
|
||||
|
||||
fn noise(&self, p: (f32, f32)) -> f32 {
|
||||
let i = (p.0.floor() as i32, p.1.floor() as i32);
|
||||
let f = (p.0.fract(), p.1.fract());
|
||||
|
||||
// cubic interpolant
|
||||
let u = (
|
||||
f.0 * f.0 * (3.0 - 2.0 * f.0),
|
||||
f.1 * f.1 * (3.0 - 2.0 * f.1)
|
||||
);
|
||||
|
||||
let a = self.permutation(i.0) + i.1;
|
||||
let b = self.permutation(i.0 + 1) + i.1;
|
||||
|
||||
lerp(
|
||||
lerp(
|
||||
self.permutation(a) as f32 / 255.0 * 2.0 - 1.0,
|
||||
self.permutation(b) as f32 / 255.0 * 2.0 - 1.0,
|
||||
u.0
|
||||
),
|
||||
lerp(
|
||||
self.permutation(a + 1) as f32 / 255.0 * 2.0 - 1.0,
|
||||
self.permutation(b + 1) as f32 / 255.0 * 2.0 - 1.0,
|
||||
u.0
|
||||
),
|
||||
u.1
|
||||
)
|
||||
}
|
||||
|
||||
pub fn generate(&self) -> Vec<f32> {
|
||||
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
||||
let mut max_amplitude = 0.0;
|
||||
let mut amplitude = 0.5;
|
||||
|
||||
// Calculate max amplitude for normalization
|
||||
for _ in 0..4 {
|
||||
max_amplitude += amplitude;
|
||||
amplitude *= 0.5;
|
||||
}
|
||||
|
||||
for y in 0..self.size.1 {
|
||||
for x in 0..self.size.0 {
|
||||
let mut uv = (
|
||||
x as f32 / self.size.0 as f32 * self.frequency as f32,
|
||||
y as f32 / self.size.1 as f32 * self.frequency as f32,
|
||||
);
|
||||
|
||||
let mut f = 0.0;
|
||||
let mut amplitude = 0.5;
|
||||
|
||||
/*for _ in 0..4 { // 4 octaves*/
|
||||
f += amplitude * self.noise(uv);
|
||||
|
||||
// Double frequency for next octave
|
||||
uv = (uv.0 * 2.0, uv.1 * 2.0);
|
||||
|
||||
// Reduce amplitude (persistence)
|
||||
amplitude *= 0.5;
|
||||
/*}*/
|
||||
|
||||
// Normalize and convert to [0, 1]
|
||||
f = ((f / max_amplitude) + 1.0) * 0.5;
|
||||
|
||||
noise.push(f);
|
||||
}
|
||||
}
|
||||
|
||||
noise
|
||||
}
|
||||
|
||||
|
||||
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
|
||||
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
|
||||
let mut max_amplitude = 0.0;
|
||||
let mut amplitude = 1.0;
|
||||
|
||||
// Calculate max amplitude for normalization
|
||||
for _ in 0..octaves {
|
||||
max_amplitude += amplitude;
|
||||
amplitude *= persistence;
|
||||
}
|
||||
|
||||
for y in 0..self.size.1 {
|
||||
for x in 0..self.size.0 {
|
||||
// Convert to UV space and scale by frequency
|
||||
let mut uv = (
|
||||
x as f32 / self.size.0 as f32 * self.frequency as f32,
|
||||
y as f32 / self.size.1 as f32 * self.frequency as f32,
|
||||
);
|
||||
|
||||
let mut f = 0.0;
|
||||
let mut amplitude = 1.0;
|
||||
|
||||
for _ in 0..octaves {
|
||||
f += amplitude * self.noise(uv);
|
||||
|
||||
// Double frequency for next octave
|
||||
uv = (uv.0 * 2.0, uv.1 * 2.0);
|
||||
|
||||
// Reduce amplitude (persistence)
|
||||
amplitude *= persistence as f32;
|
||||
}
|
||||
|
||||
// Normalize and convert to [0, 1]
|
||||
f = ((f / max_amplitude as f32) + 1.0) * 0.5;
|
||||
|
||||
noise.push(f);
|
||||
}
|
||||
}
|
||||
|
||||
noise
|
||||
}
|
||||
}
|
||||
|
|
@ -101,19 +101,23 @@ pub fn pointDerivative(func: fn(f32) -> f32, x: f32, h: f32) -> f32 {
|
|||
// # INTERPOLATION #
|
||||
// ##################################################
|
||||
|
||||
/// Linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
|
||||
pub fn lerp(a: f32, b: f32, t: f32) -> f32 {
|
||||
(1.0 - t) * a + t * b
|
||||
}
|
||||
|
||||
pub fn invLerp(a: f32, b:f32, value: f32) -> f32 {
|
||||
/// The inverse operation of linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
|
||||
pub fn inv_lerp(a: f32, b:f32, value: f32) -> f32 {
|
||||
(value - a) / (b - a)
|
||||
}
|
||||
|
||||
/// Two-dimensional linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
|
||||
pub fn lerp2(a: Vec2, b: Vec2, t: f32) -> Vec2 {
|
||||
a * (1.0 - t) + b * t
|
||||
}
|
||||
|
||||
pub fn invLerp2(a: Vec2, b: Vec2, value: Vec2) -> Option<f32> {
|
||||
/// The inverse operation of the two-dimensional linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
|
||||
pub fn inv_lerp2(a: Vec2, b: Vec2, value: Vec2) -> Option<f32> {
|
||||
let tx = (value.x() - a.x()) / (b.x() - a.x());
|
||||
let ty = (value.y() - a.y()) / (b.y() - a.y());
|
||||
|
||||
|
|
@ -123,11 +127,13 @@ pub fn invLerp2(a: Vec2, b: Vec2, value: Vec2) -> Option<f32> {
|
|||
None
|
||||
}
|
||||
|
||||
/// Three-dimensional linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
|
||||
pub fn lerp3(a: Vec3, b: Vec3, t: f32) -> Vec3 {
|
||||
a * (1.0 - t) + b * t
|
||||
}
|
||||
|
||||
pub fn invLerp3(a: Vec3, b: Vec3, value: Vec3) -> Option<f32> {
|
||||
/// The inverse operation of the three-dimensional linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
|
||||
pub fn inv_lerp3(a: Vec3, b: Vec3, value: Vec3) -> Option<f32> {
|
||||
let tx = (value.x() - a.x())/(b.x() - a.x());
|
||||
let ty = (value.y() - a.y())/(b.y() - a.y());
|
||||
let tz = (value.z() - a.z())/(b.z() - a.z());
|
||||
|
|
@ -138,6 +144,30 @@ pub fn invLerp3(a: Vec3, b: Vec3, value: Vec3) -> Option<f32> {
|
|||
None
|
||||
}
|
||||
|
||||
/// Four-dimensional linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
|
||||
pub fn lerp4(a: Vec4, b: Vec4, t: f32) -> Vec4 {
|
||||
a * (1.0 - t) + b * t
|
||||
}
|
||||
|
||||
/// The inverse operation of the four-dimensional linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
|
||||
pub fn inv_lerp4(a: Vec4, b: Vec4, value: Vec4) -> Option<f32> {
|
||||
let tx = (value.x() - a.x())/(b.x() - a.x());
|
||||
let ty = (value.y() - a.y())/(b.y() - a.y());
|
||||
let tz = (value.z() - a.z())/(b.z() - a.z());
|
||||
let tw = (value.w() - a.w())/(b.w() - a.w());
|
||||
|
||||
if (tx == ty) && (ty == tz) && (tz == tw) {
|
||||
return Some(tx);
|
||||
}
|
||||
None
|
||||
}
|
||||
|
||||
/// Cubic interpolation with the polynomial 3t² - 2t³
|
||||
fn cubic_interpolation(a: f32, b: f32, t: f32) -> f32 {
|
||||
let g = (3.0 - t * 2.0) * t * t;
|
||||
(b-a) * g + a
|
||||
}
|
||||
|
||||
// ##################################################
|
||||
// # BEZIER CURVES #
|
||||
// ##################################################
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue