fix: some things are outdated for some reason...

This commit is contained in:
lisk77 2025-01-01 06:21:32 +01:00
parent 5456d2a1d7
commit 2654a9fdc9
11 changed files with 431 additions and 44 deletions

View file

@ -2,6 +2,9 @@
name = "comet"
version = "0.1.0"
edition = "2021"
authors = ["lisk77 <contact@lisk77.dev>"]
description = "A games framework"
repository = "https://github.com/lisk77/comet"
[dependencies]
comet_app = { path = "./crates/comet_app", workspace = true }
@ -43,8 +46,11 @@ members = [
"./crates/comet_resources",
"./crates/comet_ecs",
"./crates/comet_input",
"./crates/comet_log"
, "crates/comet_ui", "crates/comet_fonts", "crates/comet_sound"]
"./crates/comet_log",
"./crates/comet_ui",
"./crates/comet_fonts",
"./crates/comet_sound"
]
[workspace.dependencies]
comet_app = { path = "./crates/comet_app", workspace = true }

View file

@ -115,7 +115,9 @@ fn main() -> Result<()> {
- [ ] UI
- [ ] Buttons
- [ ] Input
- [ ] Multiple render passes
- [ ] Post-processing
- [ ] Multiple render passes
- [ ] Individual effects
- [ ] Sound
- [ ] Input
- [ ] Universal input manager
@ -135,4 +137,23 @@ fn main() -> Result<()> {
- [ ] 3D
- [x] Plugin System (at least right now)
- [x] Adding custom game state struct
- [x] Adding custom renderer
- [x] Adding custom renderer
- [ ] Math
- [x] Vectors
- [x] Matrices
- [ ] Quaternions
- [x] Interpolation
- [ ] Bezier curves
- [x] Easing functions
- [ ] Noise
- [ ] White
- [ ] Perlin
- [ ] Simplex
- [ ] Worley
- [ ] Fractal
- [ ] Cellular
- [ ] Gradient
- [ ] Value
- [ ] Cubic
- [ ] Ray-casting
- [ ] Pathfinding

View file

@ -12,4 +12,4 @@ pub mod matrix;
pub mod quaternion;
pub mod bezier;
pub mod easings;
mod noise;
pub mod noise;

View file

@ -1,4 +1,14 @@
use rand::Rng;
use rand::{Rng, SeedableRng};
use comet_log::debug;
use crate::utilities::{lerp, lerp2, PI};
use crate::{dot, InnerSpace, Vec2};
// TODO
// Make noise struct keep their generated noise
// Create noise trait as a common interface for all noise types
// Use noise trait to let the generated noise be outputed in different ways like images or Vec<f32>
/// The WhiteNoise struct works a factory for generating white noise, given the size of the texture.
pub struct WhiteNoise {
@ -29,11 +39,298 @@ impl WhiteNoise {
let mut rng = rand::rng();
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
for _ in 0..self.size.0 * self.size.1 {
let dot_vec2 = Vec2::new(12.9898, 78.233);
for i in 0..self.size.0 * self.size.1 {
noise.push(rng.random_range(0.0..1.0));
//noise.push(((dot(&Vec2::new(x,y), &dot_vec2)).sin() * 43758.5453).fract());
}
noise
}
}
pub struct PerlinNoise {
size: (usize, usize),
frequency: f64,
seed: u32,
}
impl PerlinNoise {
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
Self {
size: (width, height),
frequency,
seed,
}
}
pub fn set_width(&mut self, width: usize) {
self.size.0 = width;
}
pub fn set_height(&mut self, height: usize) {
self.size.1 = height;
}
pub fn set_size(&mut self, width: usize, height: usize) {
self.size = (width, height);
}
pub fn set_frequency(&mut self, frequency: f64) {
self.frequency = frequency;
}
pub fn set_seed(&mut self, seed: u32) {
self.seed = seed;
}
/// Generates Perlin noise as a `Vec<f32>`. Size of the vector is `width * height`.
pub fn generate(&self) -> Vec<f32> {
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
for y in 0..self.size.1 {
for x in 0..self.size.0 {
let nx = x as f64 / self.size.0 as f64;
let ny = y as f64 / self.size.1 as f64;
let value = self.perlin(nx * self.frequency, ny * self.frequency);
noise.push(((value+1.0) * 0.5));
}
}
noise
}
/// Generates Perlin noise with multiple octaves as a `Vec<f32>`.
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
let mut noise = vec![0.0; self.size.0 * self.size.1];
let mut amplitude = 1.0;
let mut frequency = self.frequency;
let mut max_value = 0.0; // Used for normalization
for _ in 0..octaves {
for y in 0..self.size.1 {
for x in 0..self.size.0 {
let nx = x as f64 / self.size.0 as f64;
let ny = y as f64 / self.size.1 as f64;
noise[y * self.size.0 + x] += self.perlin(nx * frequency, ny * frequency) as f32 * amplitude as f32;
}
}
max_value += amplitude;
amplitude *= persistence; // Reduce amplitude for next octave
frequency *= 2.0; // Double frequency for next octave
}
// Normalize the noise to the range [0, 1]
noise.iter_mut().for_each(|value| *value /= max_value as f32);
noise.iter_mut().for_each(|value| *value = (*value + 1.0) * 0.5);
noise
}
/// A raw Perlin noise function implementation.
fn perlin(&self, x: f64, y: f64) -> f32 {
let xi = x.floor() as i32 & 255;
let yi = y.floor() as i32 & 255;
let xf = x - x.floor();
let yf = y - y.floor();
let u = Self::fade(xf);
let v = Self::fade(yf);
let a = self.permutation(xi) + yi;
let b = self.permutation(xi + 1) + yi;
let aa = self.permutation(a);
let ab = self.permutation(a + 1);
let ba = self.permutation(b);
let bb = self.permutation(b + 1);
let x1 = lerp(u as f32, Self::grad(self.permutation(aa), xf, yf) as f32, Self::grad(self.permutation(ba), xf - 1.0, yf) as f32);
let x2 = lerp(u as f32, Self::grad(self.permutation(ab), xf, yf - 1.0) as f32, Self::grad(self.permutation(bb), xf - 1.0, yf - 1.0) as f32);
lerp(v as f32, x1, x2)
}
fn fade(t: f64) -> f64 {
t * t * t * (t * (t * 6.0 - 15.0) + 10.0)
}
fn lerp(t: f64, a: f64, b: f64) -> f64 {
a + t * (b - a)
}
fn grad(hash: i32, x: f64, y: f64) -> f64 {
let h = hash & 3;
let u = if h & 2 == 0 { x } else { -x };
let v = if h & 1 == 0 { y } else { -y };
u + v
}
fn permutation(&self, value: i32) -> i32 {
const P: [i32; 256] = [
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240,
21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,
237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206,
59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153,
101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218,
246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
];
P[((value ^ self.seed as i32) & 255) as usize]
}
}
pub struct ValueNoise {
size: (usize, usize),
frequency: f64,
seed: u32,
}
impl ValueNoise {
pub fn new(width: usize, height: usize, frequency: f64, seed: u32) -> Self {
Self {
size: (width, height),
frequency,
seed,
}
}
fn permutation(&self, value: i32) -> i32 {
const P: [i32; 256] = [
151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240,
21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88,
237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231,
83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161,
1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109,
198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206,
59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153,
101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218,
246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205,
93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
];
P[((value ^ self.seed as i32) & 255) as usize]
}
fn noise(&self, p: (f32, f32)) -> f32 {
let i = (p.0.floor() as i32, p.1.floor() as i32);
let f = (p.0.fract(), p.1.fract());
// cubic interpolant
let u = (
f.0 * f.0 * (3.0 - 2.0 * f.0),
f.1 * f.1 * (3.0 - 2.0 * f.1)
);
let a = self.permutation(i.0) + i.1;
let b = self.permutation(i.0 + 1) + i.1;
lerp(
lerp(
self.permutation(a) as f32 / 255.0 * 2.0 - 1.0,
self.permutation(b) as f32 / 255.0 * 2.0 - 1.0,
u.0
),
lerp(
self.permutation(a + 1) as f32 / 255.0 * 2.0 - 1.0,
self.permutation(b + 1) as f32 / 255.0 * 2.0 - 1.0,
u.0
),
u.1
)
}
pub fn generate(&self) -> Vec<f32> {
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
let mut max_amplitude = 0.0;
let mut amplitude = 0.5;
// Calculate max amplitude for normalization
for _ in 0..4 {
max_amplitude += amplitude;
amplitude *= 0.5;
}
for y in 0..self.size.1 {
for x in 0..self.size.0 {
let mut uv = (
x as f32 / self.size.0 as f32 * self.frequency as f32,
y as f32 / self.size.1 as f32 * self.frequency as f32,
);
let mut f = 0.0;
let mut amplitude = 0.5;
/*for _ in 0..4 { // 4 octaves*/
f += amplitude * self.noise(uv);
// Double frequency for next octave
uv = (uv.0 * 2.0, uv.1 * 2.0);
// Reduce amplitude (persistence)
amplitude *= 0.5;
/*}*/
// Normalize and convert to [0, 1]
f = ((f / max_amplitude) + 1.0) * 0.5;
noise.push(f);
}
}
noise
}
pub fn generate_with_octaves(&self, octaves: u32, persistence: f64) -> Vec<f32> {
let mut noise = Vec::with_capacity(self.size.0 * self.size.1);
let mut max_amplitude = 0.0;
let mut amplitude = 1.0;
// Calculate max amplitude for normalization
for _ in 0..octaves {
max_amplitude += amplitude;
amplitude *= persistence;
}
for y in 0..self.size.1 {
for x in 0..self.size.0 {
// Convert to UV space and scale by frequency
let mut uv = (
x as f32 / self.size.0 as f32 * self.frequency as f32,
y as f32 / self.size.1 as f32 * self.frequency as f32,
);
let mut f = 0.0;
let mut amplitude = 1.0;
for _ in 0..octaves {
f += amplitude * self.noise(uv);
// Double frequency for next octave
uv = (uv.0 * 2.0, uv.1 * 2.0);
// Reduce amplitude (persistence)
amplitude *= persistence as f32;
}
// Normalize and convert to [0, 1]
f = ((f / max_amplitude as f32) + 1.0) * 0.5;
noise.push(f);
}
}
noise
}
}

View file

@ -101,19 +101,23 @@ pub fn pointDerivative(func: fn(f32) -> f32, x: f32, h: f32) -> f32 {
// # INTERPOLATION #
// ##################################################
/// Linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
pub fn lerp(a: f32, b: f32, t: f32) -> f32 {
(1.0 - t) * a + t * b
}
pub fn invLerp(a: f32, b:f32, value: f32) -> f32 {
/// The inverse operation of linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
pub fn inv_lerp(a: f32, b:f32, value: f32) -> f32 {
(value - a) / (b - a)
}
/// Two-dimensional linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
pub fn lerp2(a: Vec2, b: Vec2, t: f32) -> Vec2 {
a * (1.0 - t) + b * t
}
pub fn invLerp2(a: Vec2, b: Vec2, value: Vec2) -> Option<f32> {
/// The inverse operation of the two-dimensional linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
pub fn inv_lerp2(a: Vec2, b: Vec2, value: Vec2) -> Option<f32> {
let tx = (value.x() - a.x()) / (b.x() - a.x());
let ty = (value.y() - a.y()) / (b.y() - a.y());
@ -123,11 +127,13 @@ pub fn invLerp2(a: Vec2, b: Vec2, value: Vec2) -> Option<f32> {
None
}
/// Three-dimensional linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
pub fn lerp3(a: Vec3, b: Vec3, t: f32) -> Vec3 {
a * (1.0 - t) + b * t
}
pub fn invLerp3(a: Vec3, b: Vec3, value: Vec3) -> Option<f32> {
/// The inverse operation of the three-dimensional linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
pub fn inv_lerp3(a: Vec3, b: Vec3, value: Vec3) -> Option<f32> {
let tx = (value.x() - a.x())/(b.x() - a.x());
let ty = (value.y() - a.y())/(b.y() - a.y());
let tz = (value.z() - a.z())/(b.z() - a.z());
@ -138,6 +144,30 @@ pub fn invLerp3(a: Vec3, b: Vec3, value: Vec3) -> Option<f32> {
None
}
/// Four-dimensional linear interpolation between the values `a` and `b` with the parameter `t`, while `t` is in the range [0,1].
pub fn lerp4(a: Vec4, b: Vec4, t: f32) -> Vec4 {
a * (1.0 - t) + b * t
}
/// The inverse operation of the four-dimensional linear interpolation. Given the values `a` and `b` and the result `value`, this function returns the parameter `t`.
pub fn inv_lerp4(a: Vec4, b: Vec4, value: Vec4) -> Option<f32> {
let tx = (value.x() - a.x())/(b.x() - a.x());
let ty = (value.y() - a.y())/(b.y() - a.y());
let tz = (value.z() - a.z())/(b.z() - a.z());
let tw = (value.w() - a.w())/(b.w() - a.w());
if (tx == ty) && (ty == tz) && (tz == tw) {
return Some(tx);
}
None
}
/// Cubic interpolation with the polynomial 3t² - 2t³
fn cubic_interpolation(a: f32, b: f32, t: f32) -> f32 {
let g = (3.0 - t * 2.0) * t * t;
(b-a) * g + a
}
// ##################################################
// # BEZIER CURVES #
// ##################################################

View file

@ -30,7 +30,12 @@ impl Camera {
}
pub fn build_view_projection_matrix(&self) -> cgmath::Matrix4<f32> {
OPENGL_TO_WGPU_MATRIX * cgmath::ortho(self.position.x() - self.dimension.x() / 2.0, self.position.x() + self.dimension.x() / 2.0, self.position.y() - self.dimension.y() / 2.0, self.position.y() + self.dimension.y() / 2.0, 1.0, 0.0)
OPENGL_TO_WGPU_MATRIX * cgmath::ortho(self.position.x() - self.dimension.x() / 2.0,
self.position.x() + self.dimension.x() / 2.0,
self.position.y() - self.dimension.y() / 2.0,
self.position.y() + self.dimension.y() / 2.0,
1.0,
0.0)
}
}

View file

@ -4,6 +4,7 @@ mod camera;
pub mod renderer;
pub mod renderer2d;
mod render_pass;
mod render_group;
pub struct Projection {
aspect: f32,

View file

@ -0,0 +1,4 @@
pub struct RenderGroup {
pipeline: wgpu::RenderPipeline,
entities: Vec<u32>
}

View file

@ -24,7 +24,7 @@ pub struct Renderer2D<'a> {
config: wgpu::SurfaceConfiguration,
size: winit::dpi::PhysicalSize<u32>,
render_pipeline_layout: wgpu::PipelineLayout,
render_pipeline: wgpu::RenderPipeline,
pipelines: Vec<wgpu::RenderPipeline>,
render_pass: Vec<RenderPassInfo>,
last_frame_time: Instant,
deltatime: f32,
@ -254,6 +254,9 @@ impl<'a> Renderer2D<'a> {
cache: None,
});
let mut pipelines = Vec::new();
pipelines.push(render_pipeline);
let clear_color = match clear_color {
Some(color) => color.to_wgpu(),
None => wgpu::Color {
@ -271,7 +274,7 @@ impl<'a> Renderer2D<'a> {
config,
size,
render_pipeline_layout,
render_pipeline,
pipelines,
render_pass: vec![],
last_frame_time: Instant::now(),
deltatime: 0.0,
@ -323,6 +326,13 @@ impl<'a> Renderer2D<'a> {
info!("Shader ({}) loaded successfully", file_name);
}
pub fn load_shaders(&mut self, shader_stages: Vec<Option<ShaderStage>>, file_names: Vec<&str>) {
for (i, file_name) in file_names.iter().enumerate() {
self.load_shader(shader_stages[i].clone(), file_name);
info!("Shader ({}) loaded successfully", file_name);
}
}
/// A function that applies a shader to the entire surface of the `Renderer2D` if the shader is loaded.
pub fn apply_shader(&mut self, shader: &str) {
let shader_module = self.graphic_resource_manager.get_shader(((Self::get_project_root().unwrap().as_os_str().to_str().unwrap().to_string() + "\\resources\\shaders\\").as_str().to_string() + shader).as_str()).unwrap();
@ -372,7 +382,7 @@ impl<'a> Renderer2D<'a> {
push_constant_ranges: &[],
});
self.render_pipeline = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
self.pipelines[0] = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
@ -477,7 +487,7 @@ impl<'a> Renderer2D<'a> {
push_constant_ranges: &[],
});
self.render_pipeline = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
self.pipelines[0] = self.device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Render Pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
@ -779,7 +789,7 @@ impl<'a> Renderer2D<'a> {
label: Some("Render Encoder"),
});
for pipeline in &self.pipelines {
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some("Render Pass"),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
@ -795,35 +805,13 @@ impl<'a> Renderer2D<'a> {
timestamp_writes: None,
});
render_pass.set_pipeline(&self.render_pipeline);
render_pass.set_pipeline(pipeline);
render_pass.set_bind_group(0, &self.diffuse_bind_group, &[]);
render_pass.set_bind_group(1, &self.camera_bind_group, &[]);
render_pass.set_vertex_buffer(0, self.vertex_buffer.slice(..));
render_pass.set_index_buffer(self.index_buffer.slice(..), wgpu::IndexFormat::Uint16);
render_pass.draw_indexed(0..self.num_indices, 0, 0..1);
if self.render_pass.len() > 0 {
for (i, pass_info) in self.render_pass.iter().enumerate() {
let mut render_pass = encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
label: Some(format!("Custom Render Pass {}", i).as_str()),
color_attachments: &[Some(wgpu::RenderPassColorAttachment {
view: &view,
resolve_target: None,
ops: wgpu::Operations {
load: wgpu::LoadOp::Load,
store: wgpu::StoreOp::Store,
},
})],
depth_stencil_attachment: None,
occlusion_query_set: None,
timestamp_writes: None,
});
}
}
}
self.queue.submit(iter::once(encoder.finish()));
output.present();

View file

@ -10,4 +10,10 @@ pub use comet_log as log;
pub mod prelude {
pub use comet_app::App;
pub use comet_app::ApplicationType::App2D;
pub use comet_renderer::renderer2d::Renderer2D;
pub use comet_input::input_handler;
pub use comet_log::*;
pub use comet_colors::*;
pub use comet_ecs::*;
}

View file

@ -1,4 +1,6 @@
use std::ops::Deref;
use colored::Color::White;
use image::{GrayImage, Luma};
use comet::{
app::{
App,
@ -18,6 +20,7 @@ use comet::{
use winit_input_helper::WinitInputHelper;
use comet_input::input_handler::InputHandler;
use comet_math::noise::{PerlinNoise, ValueNoise, WhiteNoise};
#[derive(Debug, Clone)]
struct GameState {
@ -42,7 +45,6 @@ impl GameState {
fn update_position(input: WinitInputHelper, transform: &mut Transform2D, dt: f32) {
let mut direction = Vec2::ZERO;
let previous = transform.position().clone();
if input.key_held(Key::KeyW) {
direction += Vec2::Y;
@ -86,7 +88,6 @@ fn setup(app: &mut App, renderer: &mut Renderer2D) {
renderer.load_shader(None, "blacknwhite.wgsl");
renderer.load_shader(None, "crt.wgsl");
renderer.load_shader(None, "glitch.wgsl");
renderer.apply_shader("glitch.wgsl");
let world = app.world_mut();
world.register_component::<Render2D>();
@ -130,12 +131,40 @@ fn update(app: &mut App, renderer: &mut Renderer2D, dt: f32) {
renderer.render_scene_2d(app.world());
}
fn save_image_fromg_f32_vec(pixels: Vec<f32>, width: u32, height: u32, path: &str) -> Result<(), Box<dyn std::error::Error>>{
//debug!("{:?}", pixels);
if pixels.len() != (width * height) as usize {
return Err("The size of the input Vec does not match the width and height".into());
}
// Create a new image buffer with the given width and height.
let mut img = GrayImage::new(width, height);
// Iterate over the `Vec<f32>` and convert each value to u8.
for (i, &val) in pixels.iter().enumerate() {
let pixel_value = (val * 255.0).clamp(0.0, 255.0) as u8;
let x = (i as u32) % width;
let y = (i as u32) / width;
img.put_pixel(x, y, Luma([pixel_value]));
}
// Save the image to the specified path.
img.save(path)?;
Ok(())
}
fn main() {
App::new(App2D)
//let mut perlin = PerlinNoise::new(1000, 1000, 5.0, 777);
let mut perlin = ValueNoise::new(1000, 1000, 15.0, 77);
let noise = perlin.generate();
save_image_fromg_f32_vec(noise, 1000, 1000, "C:\\Users\\lisk77\\Code Sharing\\comet\\resources\\textures\\perlin.png").unwrap();
/*App::new(App2D)
.with_title("Comet App")
.with_icon(r"resources/textures/comet_icon.png")
.with_size(1920, 1080)
.with_game_state(GameState::new())
.run::<Renderer2D>(setup, update)
;
;*/
}